用于半自动语义扫描注释和分割的 OCT 特定信号特征

A. A. Sovetsky, A. Matveyev, A. A. Zykov, V. Zaitsev, L. Matveev
{"title":"用于半自动语义扫描注释和分割的 OCT 特定信号特征","authors":"A. A. Sovetsky, A. Matveyev, A. A. Zykov, V. Zaitsev, L. Matveev","doi":"10.1117/12.2686858","DOIUrl":null,"url":null,"abstract":"Computer vision approaches have grown exponentially in recent years. Training AI models often requires annotated data. To increase effectiveness of this procedure one can use semi-automatic semantic annotation tools where some simplified approaches (based either on some pretrained models or visible features parameters) are implemented and manually tuned to isolate specific objects. OCT-signals contain information-bearing specific speckle structure and signal attenuation patterns. The parameters of these patterns corresponds to tangible tissue properties (such as scatterers spatial distributions), therefore can be used to construct semi-automatic semantic annotation tools. Using OCT-signal simulation approaches we evaluate the parameters of speckle patterns and attenuation coefficients and propose novel semantic annotation tools for OCT scans. We demonstrate the performance of semi-automatic 3D segmentation and annotation. This tool can be used as a supportive tool for AI applications as well as independent tool for semi-automatic scans segmentations and further characterization.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"119 1","pages":"127700O - 127700O-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OCT-specific signal features for semi-automatic semantic scans annotation and segmentation\",\"authors\":\"A. A. Sovetsky, A. Matveyev, A. A. Zykov, V. Zaitsev, L. Matveev\",\"doi\":\"10.1117/12.2686858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computer vision approaches have grown exponentially in recent years. Training AI models often requires annotated data. To increase effectiveness of this procedure one can use semi-automatic semantic annotation tools where some simplified approaches (based either on some pretrained models or visible features parameters) are implemented and manually tuned to isolate specific objects. OCT-signals contain information-bearing specific speckle structure and signal attenuation patterns. The parameters of these patterns corresponds to tangible tissue properties (such as scatterers spatial distributions), therefore can be used to construct semi-automatic semantic annotation tools. Using OCT-signal simulation approaches we evaluate the parameters of speckle patterns and attenuation coefficients and propose novel semantic annotation tools for OCT scans. We demonstrate the performance of semi-automatic 3D segmentation and annotation. This tool can be used as a supportive tool for AI applications as well as independent tool for semi-automatic scans segmentations and further characterization.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"119 1\",\"pages\":\"127700O - 127700O-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2686858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2686858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,计算机视觉方法呈指数级增长。训练人工智能模型通常需要标注数据。为了提高这一过程的效率,人们可以使用半自动语义注释工具,在这些工具中,一些简化的方法(基于一些预训练模型或可见特征参数)得以实现,并通过手动调整来隔离特定对象。OCT 信号包含特定斑点结构和信号衰减模式的信息。这些模式的参数与有形的组织属性(如散射体空间分布)相对应,因此可用于构建半自动语义注释工具。利用 OCT 信号模拟方法,我们评估了斑点模式和衰减系数的参数,并为 OCT 扫描提出了新的语义注释工具。我们展示了半自动三维分割和注释的性能。该工具既可作为人工智能应用的辅助工具,也可作为半自动扫描分割和进一步表征的独立工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OCT-specific signal features for semi-automatic semantic scans annotation and segmentation
Computer vision approaches have grown exponentially in recent years. Training AI models often requires annotated data. To increase effectiveness of this procedure one can use semi-automatic semantic annotation tools where some simplified approaches (based either on some pretrained models or visible features parameters) are implemented and manually tuned to isolate specific objects. OCT-signals contain information-bearing specific speckle structure and signal attenuation patterns. The parameters of these patterns corresponds to tangible tissue properties (such as scatterers spatial distributions), therefore can be used to construct semi-automatic semantic annotation tools. Using OCT-signal simulation approaches we evaluate the parameters of speckle patterns and attenuation coefficients and propose novel semantic annotation tools for OCT scans. We demonstrate the performance of semi-automatic 3D segmentation and annotation. This tool can be used as a supportive tool for AI applications as well as independent tool for semi-automatic scans segmentations and further characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parity-time symmetry mode of coupled subwavelength silicon rectangular gratings Application of SERS method for detection of methotrexate molecules in human plasma Plasmonic nanostructures for environmental monitoring and/or biological applications Strong coupling of the guided modes with BIC generation in graphene-based one-dimensional dielectric gratings Self-assembled plasmonic silver nanoparticle films on anodic alumina for SERS applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1