螺旋卷管中的流体流动

Fluids Pub Date : 2023-11-27 DOI:10.3390/fluids8120308
L. Sigalotti, C. E. Alvarado-Rodríguez, Otto Rendón
{"title":"螺旋卷管中的流体流动","authors":"L. Sigalotti, C. E. Alvarado-Rodríguez, Otto Rendón","doi":"10.3390/fluids8120308","DOIUrl":null,"url":null,"abstract":"Helically coiled pipes are widely used in many industrial and engineering applications because of their compactness, larger heat transfer area per unit volume and higher efficiency in heat and mass transfer compared to other pipe geometries. They are commonly encountered in heat exchangers, steam generators in power plants and chemical reactors. The most notable feature of flow in helical pipes is the secondary flow (i.e., the cross-sectional circulatory motion) caused by centrifugal forces due to the curvature. Other important features are the stabilization effects of turbulent flow and the higher Reynolds number at which the transition from a laminar to a turbulent state occurs compared to straight pipes. A survey of the open literature on helical pipe flows shows that a good deal of experimental and theoretical work has been conducted to derive appropriate correlations to predict frictional pressure losses under laminar and turbulent conditions as well as to study the dependence of the flow characteristics and heat transfer capabilities on the Reynolds number, the Nusselt number and the geometrical parameters of the helical pipe. Despite the progress made so far in understanding the flow and heat transfer characteristics of helical pipe flow, there is still much work to be completed to address the more complex problem of multiphase flows and the impact of pipe deformation and corrugation on single- and multiphase flow. The aim of this paper is to provide a review on the state-of-the-art experimental and theoretical research concerning the flow in helically coiled pipes.","PeriodicalId":510749,"journal":{"name":"Fluids","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid Flow in Helically Coiled Pipes\",\"authors\":\"L. Sigalotti, C. E. Alvarado-Rodríguez, Otto Rendón\",\"doi\":\"10.3390/fluids8120308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helically coiled pipes are widely used in many industrial and engineering applications because of their compactness, larger heat transfer area per unit volume and higher efficiency in heat and mass transfer compared to other pipe geometries. They are commonly encountered in heat exchangers, steam generators in power plants and chemical reactors. The most notable feature of flow in helical pipes is the secondary flow (i.e., the cross-sectional circulatory motion) caused by centrifugal forces due to the curvature. Other important features are the stabilization effects of turbulent flow and the higher Reynolds number at which the transition from a laminar to a turbulent state occurs compared to straight pipes. A survey of the open literature on helical pipe flows shows that a good deal of experimental and theoretical work has been conducted to derive appropriate correlations to predict frictional pressure losses under laminar and turbulent conditions as well as to study the dependence of the flow characteristics and heat transfer capabilities on the Reynolds number, the Nusselt number and the geometrical parameters of the helical pipe. Despite the progress made so far in understanding the flow and heat transfer characteristics of helical pipe flow, there is still much work to be completed to address the more complex problem of multiphase flows and the impact of pipe deformation and corrugation on single- and multiphase flow. The aim of this paper is to provide a review on the state-of-the-art experimental and theoretical research concerning the flow in helically coiled pipes.\",\"PeriodicalId\":510749,\"journal\":{\"name\":\"Fluids\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fluids8120308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fluids8120308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与其他几何形状的管道相比,螺旋卷管结构紧凑、单位体积传热面积更大、传热和传质效率更高,因此被广泛应用于许多工业和工程领域。它们通常用于热交换器、发电厂的蒸汽发生器和化学反应器。螺旋管中最显著的流动特征是由曲率产生的离心力引起的二次流动(即横截面循环运动)。其他重要特征包括紊流的稳定效应,以及与直管相比,从层流状态过渡到紊流状态的雷诺数更高。对有关螺旋管流动的公开文献进行的调查显示,已经开展了大量的实验和理论工作,以推导出适当的相关关系,从而预测层流和湍流条件下的摩擦压力损失,并研究流动特性和传热能力与雷诺数、努塞尔特数和螺旋管几何参数的关系。尽管迄今为止在了解螺旋管流动和传热特性方面取得了进展,但要解决更为复杂的多相流问题以及管道变形和波纹对单相流和多相流的影响,仍有许多工作有待完成。本文旨在对有关螺旋卷管流动的最新实验和理论研究进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid Flow in Helically Coiled Pipes
Helically coiled pipes are widely used in many industrial and engineering applications because of their compactness, larger heat transfer area per unit volume and higher efficiency in heat and mass transfer compared to other pipe geometries. They are commonly encountered in heat exchangers, steam generators in power plants and chemical reactors. The most notable feature of flow in helical pipes is the secondary flow (i.e., the cross-sectional circulatory motion) caused by centrifugal forces due to the curvature. Other important features are the stabilization effects of turbulent flow and the higher Reynolds number at which the transition from a laminar to a turbulent state occurs compared to straight pipes. A survey of the open literature on helical pipe flows shows that a good deal of experimental and theoretical work has been conducted to derive appropriate correlations to predict frictional pressure losses under laminar and turbulent conditions as well as to study the dependence of the flow characteristics and heat transfer capabilities on the Reynolds number, the Nusselt number and the geometrical parameters of the helical pipe. Despite the progress made so far in understanding the flow and heat transfer characteristics of helical pipe flow, there is still much work to be completed to address the more complex problem of multiphase flows and the impact of pipe deformation and corrugation on single- and multiphase flow. The aim of this paper is to provide a review on the state-of-the-art experimental and theoretical research concerning the flow in helically coiled pipes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Aerodynamic Shape and Aero-Structural Optimization: Applications from Ahmed Body to NACA 0012 Airfoil and Wind Turbine Blades Flowfield and Noise Dynamics of Supersonic Rectangular Impinging Jets: Major versus Minor Axis Orientations Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors Investigation of Convective Heat Transfer and Stability on a Rotating Disk: A Novel Experimental Method and Thermal Modeling Visualization and Quantification of Facemask Leakage Flows and Interpersonal Transmission with Varying Face Coverings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1