A. Dostovalov, K. Bronnikov, S. Gladkikh, E. Mitsai, A. Zhizhchenko, A. Kuchmizhak
{"title":"飞秒激光辐射在非晶半导体薄膜上形成高度规则的纳米砾石","authors":"A. Dostovalov, K. Bronnikov, S. Gladkikh, E. Mitsai, A. Zhizhchenko, A. Kuchmizhak","doi":"10.1117/12.2687393","DOIUrl":null,"url":null,"abstract":"We present the results of direct laser-induced periodic surface structuring of semiconductors thin films (a-Si, a-Ge) deposited on glass substrate at different ambient environments (air, vacuum, nitrogen) resulting in regular gratings with the period of 600 nm to 900 nm at the laser wavelength of 1026 nm oriented either along (a-Si) or transverse (a-Ge) to the linear laser polarization direction. The processing speed has a different effect on morphology of obtained structures: on a-Si film, an increase of scanning speed leads to the reorientation of gratings and reduction of their period, while on a-Ge, the uniformity degradation and increase of the period are observed. Changing the ambient atmosphere from air to nitrogen and vacuum, when writing structures on a-Ge, helps to minimize the uniformity degradation and obtain highly regular nanogratings.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"4 1","pages":"127620A - 127620A-5"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly regular nanogratings formation on amorphous semiconductors films by femtosecond laser radiation\",\"authors\":\"A. Dostovalov, K. Bronnikov, S. Gladkikh, E. Mitsai, A. Zhizhchenko, A. Kuchmizhak\",\"doi\":\"10.1117/12.2687393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the results of direct laser-induced periodic surface structuring of semiconductors thin films (a-Si, a-Ge) deposited on glass substrate at different ambient environments (air, vacuum, nitrogen) resulting in regular gratings with the period of 600 nm to 900 nm at the laser wavelength of 1026 nm oriented either along (a-Si) or transverse (a-Ge) to the linear laser polarization direction. The processing speed has a different effect on morphology of obtained structures: on a-Si film, an increase of scanning speed leads to the reorientation of gratings and reduction of their period, while on a-Ge, the uniformity degradation and increase of the period are observed. Changing the ambient atmosphere from air to nitrogen and vacuum, when writing structures on a-Ge, helps to minimize the uniformity degradation and obtain highly regular nanogratings.\",\"PeriodicalId\":149506,\"journal\":{\"name\":\"SPIE/COS Photonics Asia\",\"volume\":\"4 1\",\"pages\":\"127620A - 127620A-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE/COS Photonics Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2687393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2687393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Highly regular nanogratings formation on amorphous semiconductors films by femtosecond laser radiation
We present the results of direct laser-induced periodic surface structuring of semiconductors thin films (a-Si, a-Ge) deposited on glass substrate at different ambient environments (air, vacuum, nitrogen) resulting in regular gratings with the period of 600 nm to 900 nm at the laser wavelength of 1026 nm oriented either along (a-Si) or transverse (a-Ge) to the linear laser polarization direction. The processing speed has a different effect on morphology of obtained structures: on a-Si film, an increase of scanning speed leads to the reorientation of gratings and reduction of their period, while on a-Ge, the uniformity degradation and increase of the period are observed. Changing the ambient atmosphere from air to nitrogen and vacuum, when writing structures on a-Ge, helps to minimize the uniformity degradation and obtain highly regular nanogratings.