基于随机森林的钢铁材料力学性能预测

Shihao Wang, Xiangxiang Wu
{"title":"基于随机森林的钢铁材料力学性能预测","authors":"Shihao Wang, Xiangxiang Wu","doi":"10.54097/fcis.v6i1.01","DOIUrl":null,"url":null,"abstract":"The mechanical performance of steel materials is crucial for the design, selection, and application of materials. In order to better predict the mechanical performance through chemical composition and process parameters, this paper establishes a predictive model for the mechanical properties of steel materials based on the random forest algorithm. The model predicts yield strength, tensile strength, and elongation based on chemical composition and process parameters. The results indicate that the random forest algorithm model demonstrates excellent performance in predicting the mechanical properties of steel materials.","PeriodicalId":346823,"journal":{"name":"Frontiers in Computing and Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mechanical Performance Prediction of Steel Materials based on Random Forest\",\"authors\":\"Shihao Wang, Xiangxiang Wu\",\"doi\":\"10.54097/fcis.v6i1.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical performance of steel materials is crucial for the design, selection, and application of materials. In order to better predict the mechanical performance through chemical composition and process parameters, this paper establishes a predictive model for the mechanical properties of steel materials based on the random forest algorithm. The model predicts yield strength, tensile strength, and elongation based on chemical composition and process parameters. The results indicate that the random forest algorithm model demonstrates excellent performance in predicting the mechanical properties of steel materials.\",\"PeriodicalId\":346823,\"journal\":{\"name\":\"Frontiers in Computing and Intelligent Systems\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computing and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/fcis.v6i1.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/fcis.v6i1.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

钢铁材料的机械性能对于材料的设计、选择和应用至关重要。为了更好地通过化学成分和工艺参数预测力学性能,本文基于随机森林算法建立了钢材料力学性能预测模型。该模型根据化学成分和工艺参数预测屈服强度、抗拉强度和伸长率。结果表明,随机森林算法模型在预测钢材料力学性能方面表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Mechanical Performance Prediction of Steel Materials based on Random Forest
The mechanical performance of steel materials is crucial for the design, selection, and application of materials. In order to better predict the mechanical performance through chemical composition and process parameters, this paper establishes a predictive model for the mechanical properties of steel materials based on the random forest algorithm. The model predicts yield strength, tensile strength, and elongation based on chemical composition and process parameters. The results indicate that the random forest algorithm model demonstrates excellent performance in predicting the mechanical properties of steel materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Relationship between Social Responsibility and Brand Value of Chinese Food and Beverage Enterprises in the Context of High-Quality Development PCB Board Defect Detection Method based on Improved YOLOv8 Collaborative Optimization of Supply Chain Intelligent Management and Industrial Artificial Intelligence Research on the Application of Non-contact Sensing Technology in Real-time Emotional Monitoring and Feedback The Collaborative Application of Internet of Things and Artificial Intelligence in Smart Logistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1