{"title":"基于纳米纤维素的水凝胶:制备策略、染料吸附和影响因素","authors":"A. Rana","doi":"10.37819/nanofab.8.1757","DOIUrl":null,"url":null,"abstract":"The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"3 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting\",\"authors\":\"A. Rana\",\"doi\":\"10.37819/nanofab.8.1757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.\",\"PeriodicalId\":51992,\"journal\":{\"name\":\"Nanofabrication\",\"volume\":\"3 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanofabrication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37819/nanofab.8.1757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37819/nanofab.8.1757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting
The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.