用于弹流润滑椭圆形触头薄膜厚度预测的机器学习技术

IF 3.1 3区 工程技术 Q2 ENGINEERING, MECHANICAL Lubricants Pub Date : 2023-11-22 DOI:10.3390/lubricants11120497
Joe Issa, Alain El Hajj, Philippe Vergne, W. Habchi
{"title":"用于弹流润滑椭圆形触头薄膜厚度预测的机器学习技术","authors":"Joe Issa, Alain El Hajj, Philippe Vergne, W. Habchi","doi":"10.3390/lubricants11120497","DOIUrl":null,"url":null,"abstract":"This study extends the use of Machine Learning (ML) approaches for lubricant film thickness predictions to the general case of elliptical elastohydrodynamic (EHD) contacts, by considering wide and narrow contacts over a wide range of ellipticity and operating conditions. Finite element (FEM) simulations are used to generate substantial training and testing datasets that are used within the proposed ML framework. The complete dataset entails 915 samples; split into an 823-sample training dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined dataset samples, respectively. The proposed ML model consists of a pre-processing stage in which conventional EHD dimensionless groups are used to minimize the number of inputs into the model, reducing them to only three. The core of the model is based on Gaussian Process Regression (GPR), a powerful ML regression tool, well-suited for small-sized datasets, producing output central and minimum film thicknesses, also in dimensionless form. The last stage is a post-processing one, in which the output film thicknesses are retrieved in dimensional from. The results reveal the capabilities and potential of the proposed ML framework, producing quasi-instantaneous predictions that are far more accurate than conventional film thickness analytical formulae. In fact, the produced central and minimum film thickness predictions are on average within 0.3% and 1.0% of the FEM results, respectively.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning for Film Thickness Prediction in Elastohydrodynamic Lubricated Elliptical Contacts\",\"authors\":\"Joe Issa, Alain El Hajj, Philippe Vergne, W. Habchi\",\"doi\":\"10.3390/lubricants11120497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study extends the use of Machine Learning (ML) approaches for lubricant film thickness predictions to the general case of elliptical elastohydrodynamic (EHD) contacts, by considering wide and narrow contacts over a wide range of ellipticity and operating conditions. Finite element (FEM) simulations are used to generate substantial training and testing datasets that are used within the proposed ML framework. The complete dataset entails 915 samples; split into an 823-sample training dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined dataset samples, respectively. The proposed ML model consists of a pre-processing stage in which conventional EHD dimensionless groups are used to minimize the number of inputs into the model, reducing them to only three. The core of the model is based on Gaussian Process Regression (GPR), a powerful ML regression tool, well-suited for small-sized datasets, producing output central and minimum film thicknesses, also in dimensionless form. The last stage is a post-processing one, in which the output film thicknesses are retrieved in dimensional from. The results reveal the capabilities and potential of the proposed ML framework, producing quasi-instantaneous predictions that are far more accurate than conventional film thickness analytical formulae. In fact, the produced central and minimum film thickness predictions are on average within 0.3% and 1.0% of the FEM results, respectively.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11120497\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11120497","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究将机器学习(ML)方法用于润滑油膜厚度预测的范围扩展到椭圆形弹性流体动力(EHD)接触的一般情况,考虑了宽椭圆度和工作条件范围内的宽接触和窄接触。有限元(FEM)模拟用于生成大量的训练和测试数据集,这些数据集可用于所提议的 ML 框架。完整的数据集包含 915 个样本;分为 823 个样本的训练数据集和 92 个样本的测试数据集,分别相当于综合数据集样本的 90% 和 10%。所提出的 ML 模型包括一个预处理阶段,在该阶段中使用传统的 EHD 无量纲组,以最大限度地减少模型输入的数量,将其减少到仅有三个。该模型的核心基于高斯过程回归 (GPR),这是一种功能强大的 ML 回归工具,非常适合小型数据集,可生成无量纲形式的输出中心膜厚和最小膜厚。最后一个阶段是后处理阶段,输出的薄膜厚度以无量纲形式进行检索。结果揭示了所提出的 ML 框架的能力和潜力,其产生的准瞬时预测结果比传统的薄膜厚度分析公式精确得多。事实上,所生成的中心和最小薄膜厚度预测值与有限元计算结果的平均误差分别在 0.3% 和 1.0% 以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Film Thickness Prediction in Elastohydrodynamic Lubricated Elliptical Contacts
This study extends the use of Machine Learning (ML) approaches for lubricant film thickness predictions to the general case of elliptical elastohydrodynamic (EHD) contacts, by considering wide and narrow contacts over a wide range of ellipticity and operating conditions. Finite element (FEM) simulations are used to generate substantial training and testing datasets that are used within the proposed ML framework. The complete dataset entails 915 samples; split into an 823-sample training dataset and a 92-sample testing dataset, corresponding to 90% and 10% of the combined dataset samples, respectively. The proposed ML model consists of a pre-processing stage in which conventional EHD dimensionless groups are used to minimize the number of inputs into the model, reducing them to only three. The core of the model is based on Gaussian Process Regression (GPR), a powerful ML regression tool, well-suited for small-sized datasets, producing output central and minimum film thicknesses, also in dimensionless form. The last stage is a post-processing one, in which the output film thicknesses are retrieved in dimensional from. The results reveal the capabilities and potential of the proposed ML framework, producing quasi-instantaneous predictions that are far more accurate than conventional film thickness analytical formulae. In fact, the produced central and minimum film thickness predictions are on average within 0.3% and 1.0% of the FEM results, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lubricants
Lubricants Engineering-Mechanical Engineering
CiteScore
3.60
自引率
25.70%
发文量
293
审稿时长
11 weeks
期刊介绍: This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding
期刊最新文献
Effect of a Substrate’s Preheating Temperature on the Microstructure and Properties of Ni-Based Alloy Coatings Effect of Operating Parameters on the Mulching Device Wear Behavior of a Ridging and Mulching Machine A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning Influence of 1-Ethyl-3-methylimidazolium Diethylphosphate Ionic Liquid on the Performance of Eu- and Gd-Doped Diamond-like Carbon Coatings The Effect of Slider Configuration on Lubricant Depletion at the Slider/Disk Contact Interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1