平滑粒子磁流体力学

T. Tricco
{"title":"平滑粒子磁流体力学","authors":"T. Tricco","doi":"10.3389/fspas.2023.1288219","DOIUrl":null,"url":null,"abstract":"Smoothed particle magnetohydrodynamics has reached a level of maturity that enables the study of a wide range of astrophysical problems. In this review, the numerical details of the modern SPMHD method are described. The three fundamental components of SPMHD are methods to evolve the magnetic field in time, calculate accelerations from the magnetic field, and maintain the divergence-free constraint on the magnetic field (no monopoles). The connection between these three requirements in SPMHD will be highlighted throughout. The focus of this review is on the methods that work well in practice, with discussion on why they work well and other approaches do not. Numerical instabilities will be discussed, as well as strategies to overcome them. The inclusion of non-ideal MHD effects will be presented. A prospective outlook on possible avenues for further improvements will be discussed.","PeriodicalId":507437,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smoothed particle magnetohydrodynamics\",\"authors\":\"T. Tricco\",\"doi\":\"10.3389/fspas.2023.1288219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smoothed particle magnetohydrodynamics has reached a level of maturity that enables the study of a wide range of astrophysical problems. In this review, the numerical details of the modern SPMHD method are described. The three fundamental components of SPMHD are methods to evolve the magnetic field in time, calculate accelerations from the magnetic field, and maintain the divergence-free constraint on the magnetic field (no monopoles). The connection between these three requirements in SPMHD will be highlighted throughout. The focus of this review is on the methods that work well in practice, with discussion on why they work well and other approaches do not. Numerical instabilities will be discussed, as well as strategies to overcome them. The inclusion of non-ideal MHD effects will be presented. A prospective outlook on possible avenues for further improvements will be discussed.\",\"PeriodicalId\":507437,\"journal\":{\"name\":\"Frontiers in Astronomy and Space Sciences\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Astronomy and Space Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fspas.2023.1288219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1288219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

平滑粒子磁流体力学已经达到了成熟的水平,可以研究广泛的天体物理问题。在这篇综述中,将介绍现代 SPMHD 方法的数值细节。SPMHD 的三个基本组成部分是及时演化磁场、计算磁场加速度和保持磁场无发散约束(无单极)的方法。SPMHD 中这三个要求之间的联系将贯穿始终。本综述的重点是在实践中行之有效的方法,并讨论为什么这些方法行之有效,而其他方法却行不通。将讨论数值不稳定性以及克服不稳定性的策略。还将介绍纳入非理想 MHD 效应的情况。还将讨论进一步改进的可能途径的前景展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smoothed particle magnetohydrodynamics
Smoothed particle magnetohydrodynamics has reached a level of maturity that enables the study of a wide range of astrophysical problems. In this review, the numerical details of the modern SPMHD method are described. The three fundamental components of SPMHD are methods to evolve the magnetic field in time, calculate accelerations from the magnetic field, and maintain the divergence-free constraint on the magnetic field (no monopoles). The connection between these three requirements in SPMHD will be highlighted throughout. The focus of this review is on the methods that work well in practice, with discussion on why they work well and other approaches do not. Numerical instabilities will be discussed, as well as strategies to overcome them. The inclusion of non-ideal MHD effects will be presented. A prospective outlook on possible avenues for further improvements will be discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a W UMa-type contact binary GZ And in a physical triple system Probing turbulence in solar flares from SDO/AIA emission lines Dependence of daytime thermospheric winds on IMF By as measured from south pole Numerical model of the QiTai radio Telescope PAF receiver signal and simulation of interference mitigation Research on identification of nucleus-shaped anomaly regions in space electric field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1