高温下混凝土从微观裂缝到宏观损伤的多尺度模型

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2023-11-22 DOI:10.1177/10567895231215554
Bin Sun, Tong Guo
{"title":"高温下混凝土从微观裂缝到宏观损伤的多尺度模型","authors":"Bin Sun, Tong Guo","doi":"10.1177/10567895231215554","DOIUrl":null,"url":null,"abstract":"A multi-scale model is established to describe the relationship between the macroscopic damage evolution and microscopic cracks behaviors of concrete at elevated temperatures. The evolution equation of the ideal microscopic crack system of concrete at elevated temperatures is deduced for construct the model, which can predict the microscopic crack density and macroscopic damage of concrete at elevated temperatures. The multi-scale model fuses some advantages of the traditional microscopic and macroscopic damage models. Finally, multi-scale damage of a concrete block under high temperature is predicted and compared with the corresponding experimental results, which is utilized to support the ability of the developed model. The results show that the developed multi-scale model can be used to evaluate fire damage of concrete structures in macro-scale as well as explain its physical mechanisms in micro-scale.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"65 ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multi-scale model from microscopic cracks to macroscopic damage of concrete at elevated temperatures\",\"authors\":\"Bin Sun, Tong Guo\",\"doi\":\"10.1177/10567895231215554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-scale model is established to describe the relationship between the macroscopic damage evolution and microscopic cracks behaviors of concrete at elevated temperatures. The evolution equation of the ideal microscopic crack system of concrete at elevated temperatures is deduced for construct the model, which can predict the microscopic crack density and macroscopic damage of concrete at elevated temperatures. The multi-scale model fuses some advantages of the traditional microscopic and macroscopic damage models. Finally, multi-scale damage of a concrete block under high temperature is predicted and compared with the corresponding experimental results, which is utilized to support the ability of the developed model. The results show that the developed multi-scale model can be used to evaluate fire damage of concrete structures in macro-scale as well as explain its physical mechanisms in micro-scale.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"65 \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231215554\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231215554","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

建立了一个多尺度模型来描述高温下混凝土宏观损伤演变与微观裂缝行为之间的关系。推导出了高温下混凝土理想微观裂缝体系的演化方程,从而构建了该模型,该模型可预测高温下混凝土的微观裂缝密度和宏观损伤。多尺度模型融合了传统微观和宏观损伤模型的一些优点。最后,对混凝土块在高温下的多尺度损伤进行了预测,并与相应的实验结果进行了比较,以证明所开发模型的能力。结果表明,所开发的多尺度模型可用于在宏观尺度上评估混凝土结构的火灾损伤,并在微观尺度上解释其物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-scale model from microscopic cracks to macroscopic damage of concrete at elevated temperatures
A multi-scale model is established to describe the relationship between the macroscopic damage evolution and microscopic cracks behaviors of concrete at elevated temperatures. The evolution equation of the ideal microscopic crack system of concrete at elevated temperatures is deduced for construct the model, which can predict the microscopic crack density and macroscopic damage of concrete at elevated temperatures. The multi-scale model fuses some advantages of the traditional microscopic and macroscopic damage models. Finally, multi-scale damage of a concrete block under high temperature is predicted and compared with the corresponding experimental results, which is utilized to support the ability of the developed model. The results show that the developed multi-scale model can be used to evaluate fire damage of concrete structures in macro-scale as well as explain its physical mechanisms in micro-scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Formulation and verification of an anisotropic damage plasticity constitutive model for plain concrete On effective moduli of defective beam lattices via the lattice green’s functions Multi-scale study on the fatigue mechanical properties and energy laws of thermal-damage granite under fatigue loading A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction Micro-damage instability mechanisms in composite materials: Cracking coalescence versus fibre ductility and slippage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1