{"title":"埃塞俄比亚 Weyib 流域取水量变化情况下的地下水数值模拟","authors":"M. Aredo, T. K. Lohani, A. Mohammed","doi":"10.1080/23311916.2023.2283297","DOIUrl":null,"url":null,"abstract":"Abstract Groundwater is the primary source of water supply in Ethiopia. The study area was challenged due to increasing water demand, uneven water resource distribution, and noticeable changes in groundwater levels. The study focused on the examining of existing abstraction and future water demand scenarios on groundwater balance in the Weyib watershed using the WetSpass-M and MODFLOW-2005 models. The input datasets, such as aquifer properties, observed groundwater heads, hydrogeology, groundwater recharge, the Digital Elevation Model (DEM), and hydrological data were used. Datasets were prepared to better represent subsurface hydrology and its future demand effects evaluated using calibrated steady-state numerical groundwater modeling. The WetSpass-M and MODFLOW-2005 models depicted good performances during the simulations of groundwater recharge and groundwater budget under existing abstractions and estimated demand scenarios, respectively. The mean annual groundwater recharge estimated was 177.66 mm/year. The existing groundwater abstraction was 34,686.39, estimated short-term and long-term water demand scenarios were 72,113.61 and 93,795.57 m3/day, respectively. The upstream area has the highest groundwater head and recharge, while decreasing as it approaches the Weyib watershed outlet. During the outflow groundwater budget, the groundwater abstractions increased as expenses of river leakage and head dept. bounds increased. Moreover, the increasing groundwater withdrawal would reduce groundwater heads, and the estimated future water demand scenarios would substantially impact the groundwater budget, which would also have an impact on the watershed hydrology and ecosystem.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"107 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical groundwater modelling under changing water abstraction in Weyib watershed, Ethiopia\",\"authors\":\"M. Aredo, T. K. Lohani, A. Mohammed\",\"doi\":\"10.1080/23311916.2023.2283297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Groundwater is the primary source of water supply in Ethiopia. The study area was challenged due to increasing water demand, uneven water resource distribution, and noticeable changes in groundwater levels. The study focused on the examining of existing abstraction and future water demand scenarios on groundwater balance in the Weyib watershed using the WetSpass-M and MODFLOW-2005 models. The input datasets, such as aquifer properties, observed groundwater heads, hydrogeology, groundwater recharge, the Digital Elevation Model (DEM), and hydrological data were used. Datasets were prepared to better represent subsurface hydrology and its future demand effects evaluated using calibrated steady-state numerical groundwater modeling. The WetSpass-M and MODFLOW-2005 models depicted good performances during the simulations of groundwater recharge and groundwater budget under existing abstractions and estimated demand scenarios, respectively. The mean annual groundwater recharge estimated was 177.66 mm/year. The existing groundwater abstraction was 34,686.39, estimated short-term and long-term water demand scenarios were 72,113.61 and 93,795.57 m3/day, respectively. The upstream area has the highest groundwater head and recharge, while decreasing as it approaches the Weyib watershed outlet. During the outflow groundwater budget, the groundwater abstractions increased as expenses of river leakage and head dept. bounds increased. Moreover, the increasing groundwater withdrawal would reduce groundwater heads, and the estimated future water demand scenarios would substantially impact the groundwater budget, which would also have an impact on the watershed hydrology and ecosystem.\",\"PeriodicalId\":10464,\"journal\":{\"name\":\"Cogent Engineering\",\"volume\":\"107 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311916.2023.2283297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2283297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical groundwater modelling under changing water abstraction in Weyib watershed, Ethiopia
Abstract Groundwater is the primary source of water supply in Ethiopia. The study area was challenged due to increasing water demand, uneven water resource distribution, and noticeable changes in groundwater levels. The study focused on the examining of existing abstraction and future water demand scenarios on groundwater balance in the Weyib watershed using the WetSpass-M and MODFLOW-2005 models. The input datasets, such as aquifer properties, observed groundwater heads, hydrogeology, groundwater recharge, the Digital Elevation Model (DEM), and hydrological data were used. Datasets were prepared to better represent subsurface hydrology and its future demand effects evaluated using calibrated steady-state numerical groundwater modeling. The WetSpass-M and MODFLOW-2005 models depicted good performances during the simulations of groundwater recharge and groundwater budget under existing abstractions and estimated demand scenarios, respectively. The mean annual groundwater recharge estimated was 177.66 mm/year. The existing groundwater abstraction was 34,686.39, estimated short-term and long-term water demand scenarios were 72,113.61 and 93,795.57 m3/day, respectively. The upstream area has the highest groundwater head and recharge, while decreasing as it approaches the Weyib watershed outlet. During the outflow groundwater budget, the groundwater abstractions increased as expenses of river leakage and head dept. bounds increased. Moreover, the increasing groundwater withdrawal would reduce groundwater heads, and the estimated future water demand scenarios would substantially impact the groundwater budget, which would also have an impact on the watershed hydrology and ecosystem.
期刊介绍:
One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.