Hailong Jin, Lin Huang, Chunlai Wang, Changfeng Li, Haer Yizi, Zhian Bai, Liang Sun, Ze Zhao, Biao Chen, Yanjiang Liu
{"title":"降雨条件下高陡边坡滑坡的诱发模式","authors":"Hailong Jin, Lin Huang, Chunlai Wang, Changfeng Li, Haer Yizi, Zhian Bai, Liang Sun, Ze Zhao, Biao Chen, Yanjiang Liu","doi":"10.1093/jge/gxad098","DOIUrl":null,"url":null,"abstract":"Due to the deep concave mining in Bayan Obo stope, the slope angle is steep, the terrain is high, the outcrop width of the crushing belt is large, the stability of many slopes is poor, and there are potential sliding surfaces. In this paper, through on-site investigation and sampling, the main factors affecting the landslide of the high and steep slopes of Bayan Obo are analysed. Uniaxial compression tests were carried out to obtain the mechanical parameters of dolomite and slate. With the help of the three-dimensional digital speckle system, the whole process of slope landslide under rainfall conditions was studied through similar simulation and numerical simulation experiments. The influence of rainfall on the slope of Bayan Obo and the induced pattern of landslide were revealed. The experimental results show that rainfall is the key to inducing instability, the slippage at the edge of the slope is obvious, and there is seepage in the depth, but the effect is not significant. The landslide can be roughly divided into the damage accumulation stage; the deformation development and expansion stage and the unstable slip stage.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced pattern of high and steep slope landslide under rainfall conditions\",\"authors\":\"Hailong Jin, Lin Huang, Chunlai Wang, Changfeng Li, Haer Yizi, Zhian Bai, Liang Sun, Ze Zhao, Biao Chen, Yanjiang Liu\",\"doi\":\"10.1093/jge/gxad098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the deep concave mining in Bayan Obo stope, the slope angle is steep, the terrain is high, the outcrop width of the crushing belt is large, the stability of many slopes is poor, and there are potential sliding surfaces. In this paper, through on-site investigation and sampling, the main factors affecting the landslide of the high and steep slopes of Bayan Obo are analysed. Uniaxial compression tests were carried out to obtain the mechanical parameters of dolomite and slate. With the help of the three-dimensional digital speckle system, the whole process of slope landslide under rainfall conditions was studied through similar simulation and numerical simulation experiments. The influence of rainfall on the slope of Bayan Obo and the induced pattern of landslide were revealed. The experimental results show that rainfall is the key to inducing instability, the slippage at the edge of the slope is obvious, and there is seepage in the depth, but the effect is not significant. The landslide can be roughly divided into the damage accumulation stage; the deformation development and expansion stage and the unstable slip stage.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxad098\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad098","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Induced pattern of high and steep slope landslide under rainfall conditions
Due to the deep concave mining in Bayan Obo stope, the slope angle is steep, the terrain is high, the outcrop width of the crushing belt is large, the stability of many slopes is poor, and there are potential sliding surfaces. In this paper, through on-site investigation and sampling, the main factors affecting the landslide of the high and steep slopes of Bayan Obo are analysed. Uniaxial compression tests were carried out to obtain the mechanical parameters of dolomite and slate. With the help of the three-dimensional digital speckle system, the whole process of slope landslide under rainfall conditions was studied through similar simulation and numerical simulation experiments. The influence of rainfall on the slope of Bayan Obo and the induced pattern of landslide were revealed. The experimental results show that rainfall is the key to inducing instability, the slippage at the edge of the slope is obvious, and there is seepage in the depth, but the effect is not significant. The landslide can be roughly divided into the damage accumulation stage; the deformation development and expansion stage and the unstable slip stage.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.