病毒群落研究中元转录组数据集交叉组装的性能分析

Yu.S. Bukin, A. N. Bondaryuk, T.V. Butina
{"title":"病毒群落研究中元转录组数据集交叉组装的性能分析","authors":"Yu.S. Bukin, A. N. Bondaryuk, T.V. Butina","doi":"10.17537/2023.18.418","DOIUrl":null,"url":null,"abstract":"We conducted a comparative analysis of individual and cross-assemblies of several metatranscriptomic data sets to study viral communities using several metatranscriptomes of endemic Baikal mollusks. We have shown that, compared to individual dataset assemblies, a Hidden Markov Model-based cross-assembly procedure increases the number of viral contigs (or scaffolds) per sample, the number of virotypes identified, and the average length of scaffolds per sample. The proportion of assembled viral reads from the total number of reads in samples is higher in cross-assembly. De novo cross-genomic assemblies combined with a virus identification algorithm using Hidden Markov Model present the data in a table with the number of reads from different samples for each scaffold. The table allows comparison of samples based on the representation of all viral scaffolds, including those not taxonomically identified, i.e. those that have no analogues in the NCBI RefSeq database. Thus, cross-genomic assemblies allow for comparative analyzes taking into account the latent diversity of viruses. We propose a pipeline for metatranscriptomic data analysis using de novo cross-genomic assembly to study viral diversity.","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Analysis of Cross-Assembly of Metatranscriptomic Datasets in Viral Community Studies\",\"authors\":\"Yu.S. Bukin, A. N. Bondaryuk, T.V. Butina\",\"doi\":\"10.17537/2023.18.418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We conducted a comparative analysis of individual and cross-assemblies of several metatranscriptomic data sets to study viral communities using several metatranscriptomes of endemic Baikal mollusks. We have shown that, compared to individual dataset assemblies, a Hidden Markov Model-based cross-assembly procedure increases the number of viral contigs (or scaffolds) per sample, the number of virotypes identified, and the average length of scaffolds per sample. The proportion of assembled viral reads from the total number of reads in samples is higher in cross-assembly. De novo cross-genomic assemblies combined with a virus identification algorithm using Hidden Markov Model present the data in a table with the number of reads from different samples for each scaffold. The table allows comparison of samples based on the representation of all viral scaffolds, including those not taxonomically identified, i.e. those that have no analogues in the NCBI RefSeq database. Thus, cross-genomic assemblies allow for comparative analyzes taking into account the latent diversity of viruses. We propose a pipeline for metatranscriptomic data analysis using de novo cross-genomic assembly to study viral diversity.\",\"PeriodicalId\":53525,\"journal\":{\"name\":\"Mathematical Biology and Bioinformatics\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17537/2023.18.418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2023.18.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们对几个元转录组数据集的单独组装和交叉组装进行了比较分析,以便利用贝加尔湖特有软体动物的几个元转录组研究病毒群落。我们的研究表明,与单个数据集组装相比,基于隐马尔可夫模型的交叉组装程序增加了每个样本的病毒等位基因(或支架)数量、确定的病毒类型数量以及每个样本支架的平均长度。在交叉组装过程中,组装的病毒读数占样本读数总数的比例更高。新的交叉基因组组装与使用隐马尔可夫模型的病毒识别算法相结合,将数据以表格的形式呈现出来,其中包含每个支架上来自不同样本的读数数量。通过该表,可以根据所有病毒支架的代表性对样本进行比较,包括那些未在分类学上确定的病毒支架,即那些在 NCBI RefSeq 数据库中没有类似物的病毒支架。因此,跨基因组组装可以在考虑病毒潜在多样性的基础上进行比较分析。我们提出了一种利用从头交叉基因组组装进行元转录组数据分析的方法,以研究病毒的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance Analysis of Cross-Assembly of Metatranscriptomic Datasets in Viral Community Studies
We conducted a comparative analysis of individual and cross-assemblies of several metatranscriptomic data sets to study viral communities using several metatranscriptomes of endemic Baikal mollusks. We have shown that, compared to individual dataset assemblies, a Hidden Markov Model-based cross-assembly procedure increases the number of viral contigs (or scaffolds) per sample, the number of virotypes identified, and the average length of scaffolds per sample. The proportion of assembled viral reads from the total number of reads in samples is higher in cross-assembly. De novo cross-genomic assemblies combined with a virus identification algorithm using Hidden Markov Model present the data in a table with the number of reads from different samples for each scaffold. The table allows comparison of samples based on the representation of all viral scaffolds, including those not taxonomically identified, i.e. those that have no analogues in the NCBI RefSeq database. Thus, cross-genomic assemblies allow for comparative analyzes taking into account the latent diversity of viruses. We propose a pipeline for metatranscriptomic data analysis using de novo cross-genomic assembly to study viral diversity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
期刊最新文献
Modeling Growth and Photoadaptation of Porphyridium purpureum Batch Culture Mathematical Modeling of the Initial Period of Spread of HIV-1 Infection in the Lymphatic Node Mathematical Model of Closed Microecosystem “Algae – Heterotrophic Bacteria” Using a Drug Repurposing Strategy to Virtually Screen Potential HIV-1 Entry Inhibitors That Block the NHR Domain of the Viral Envelope Protein gp41 Applying Laplace Transformation on Epidemiological Models as Caputo Derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1