了解沉积后顺序退火对 Cu2ZnSnSe4 薄膜物理和化学性质的影响

Surfaces Pub Date : 2023-11-19 DOI:10.3390/surfaces6040031
D. Catana, M. Zaki, I. Simandan, A. Buruiana, Florinel Sava, A. Velea
{"title":"了解沉积后顺序退火对 Cu2ZnSnSe4 薄膜物理和化学性质的影响","authors":"D. Catana, M. Zaki, I. Simandan, A. Buruiana, Florinel Sava, A. Velea","doi":"10.3390/surfaces6040031","DOIUrl":null,"url":null,"abstract":"Cu2ZnSnSe4 thin films have been synthesized by employing two magnetron-sputtering depositions, interlaced with two sequential post-deposition heat treatments in low vacuum, Sn+Se and Se–rich atmospheres at 550 °C. By employing successive structural analysis methods, namely Grazing Incidence X–Ray Diffraction (GIXRD) and Raman Spectroscopy, secondary phases such as ZnSe coexisting with the main kesterite phase have been identified. SEM peered into the surface morphology of the samples, detecting structural defects and grain profiles, while EDS experiments showed off–stoichiometric elemental composition. The optical bandgaps in our samples were calculated by a widely used extrapolation method from recorded transmission spectra, holding values from 1.42 to 2.01 eV. Understanding the processes behind the appearance of secondary phases and occurring structural defects accompanied by finding ways to mitigate their impact on the solar cells’ properties is the prime goal of the research beforehand.","PeriodicalId":22129,"journal":{"name":"Surfaces","volume":"100 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films\",\"authors\":\"D. Catana, M. Zaki, I. Simandan, A. Buruiana, Florinel Sava, A. Velea\",\"doi\":\"10.3390/surfaces6040031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cu2ZnSnSe4 thin films have been synthesized by employing two magnetron-sputtering depositions, interlaced with two sequential post-deposition heat treatments in low vacuum, Sn+Se and Se–rich atmospheres at 550 °C. By employing successive structural analysis methods, namely Grazing Incidence X–Ray Diffraction (GIXRD) and Raman Spectroscopy, secondary phases such as ZnSe coexisting with the main kesterite phase have been identified. SEM peered into the surface morphology of the samples, detecting structural defects and grain profiles, while EDS experiments showed off–stoichiometric elemental composition. The optical bandgaps in our samples were calculated by a widely used extrapolation method from recorded transmission spectra, holding values from 1.42 to 2.01 eV. Understanding the processes behind the appearance of secondary phases and occurring structural defects accompanied by finding ways to mitigate their impact on the solar cells’ properties is the prime goal of the research beforehand.\",\"PeriodicalId\":22129,\"journal\":{\"name\":\"Surfaces\",\"volume\":\"100 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/surfaces6040031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/surfaces6040031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cu2ZnSnSe4 薄膜是通过两次磁控溅射沉积,并在 550 °C 的低真空、锡+硒和富硒气氛中进行两次交错沉积后热处理而合成的。通过采用连续的结构分析方法,即冰晶入射 X 射线衍射 (GIXRD) 和拉曼光谱,确定了与主要沸石相共存的 ZnSe 等次生相。扫描电子显微镜(SEM)可窥探样品的表面形态,发现结构缺陷和晶粒轮廓,而 EDS 实验则显示了非化学计量元素组成。我们的样品中的光带隙是根据记录的透射光谱通过广泛使用的外推法计算得出的,其值在 1.42 至 2.01 eV 之间。了解次生相和结构缺陷出现背后的过程,并找到减轻其对太阳能电池性能影响的方法,是目前研究的首要目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding the Effects of Post-Deposition Sequential Annealing on the Physical and Chemical Properties of Cu2ZnSnSe4 Thin Films
Cu2ZnSnSe4 thin films have been synthesized by employing two magnetron-sputtering depositions, interlaced with two sequential post-deposition heat treatments in low vacuum, Sn+Se and Se–rich atmospheres at 550 °C. By employing successive structural analysis methods, namely Grazing Incidence X–Ray Diffraction (GIXRD) and Raman Spectroscopy, secondary phases such as ZnSe coexisting with the main kesterite phase have been identified. SEM peered into the surface morphology of the samples, detecting structural defects and grain profiles, while EDS experiments showed off–stoichiometric elemental composition. The optical bandgaps in our samples were calculated by a widely used extrapolation method from recorded transmission spectra, holding values from 1.42 to 2.01 eV. Understanding the processes behind the appearance of secondary phases and occurring structural defects accompanied by finding ways to mitigate their impact on the solar cells’ properties is the prime goal of the research beforehand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
期刊最新文献
Applicability of Fluorine Gas Surface Treatment to Control Liquid Sodium Wettability Evaluation of Photocatalytic Hydrogen Evolution in Zr-Doped TiO2 Thin Films Evaluation of the Feasibility of the Prediction of the Surface Morphologiesof AWJ-Milled Pockets by Statistical Methods Based on Multiple Roughness Indicators Formation of Organic Monolayers on KF-Etched Si Surfaces Metal–Perovskite Interfacial Engineering to Boost Activity in Heterogeneous Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1