INEH-VNS 算法解决准时制环境下的自动生产系统调度问题

IF 1.2 Q2 MATHEMATICS, APPLIED Journal of Applied Mathematics Pub Date : 2023-11-17 DOI:10.1155/2023/6680897
Qingxiang Li, Xiaofei Zhao, He Yude, Shaojun Yin
{"title":"INEH-VNS 算法解决准时制环境下的自动生产系统调度问题","authors":"Qingxiang Li, Xiaofei Zhao, He Yude, Shaojun Yin","doi":"10.1155/2023/6680897","DOIUrl":null,"url":null,"abstract":"Automatic production system scheduling problem under a just-in-time environment is researched in this paper. The automatic production system is composed of many tanks and one robotic, the tank of the researched problem is responsible for processing the job, and the robotic moves the job from one tank to the other tank. The difference between the researched problem and the classic shop scheduling problem is that the former must consider job scheduling and the robotic move sequence, but the latter considers only job scheduling. For optimizing simultaneously job scheduling and robotic move sequence in the proposed problem and minimizing total earliness/tardiness, an improved NEH (Nawaz-Enscore-Ham) and variable search (INEH-VNS) algorithm are developed. In the proposed method, firstly, to obtain initial solution, an improved NEH is shown. Secondly, for computing value of the objective function, the double procedure method is constructed. Thirdly, according to the properties of the proposed problem, three neighborhood structures, adjacent exchange, random insertion, and job exchange, are investigated. To test the performance of the INEH-VNS, 100 instances are randomly generated. When the run time is the same, compared with CPLEX 12.5, the INEH-VNS algorithm can find high-quality approximate optimal solution, a special big scale. Compared with the G-VNS algorithm, the average improvement rate of the approximate optimal solution is 45.9%, and the average stability rate of the INEH-VNS algorithm enhances 75.04%. That is to say, the INEH-VNS algorithm is outstanding and more effective.","PeriodicalId":49251,"journal":{"name":"Journal of Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INEH-VNS Algorithm Solved Automatic Production System Scheduling Problem under Just-in-Time Environment\",\"authors\":\"Qingxiang Li, Xiaofei Zhao, He Yude, Shaojun Yin\",\"doi\":\"10.1155/2023/6680897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic production system scheduling problem under a just-in-time environment is researched in this paper. The automatic production system is composed of many tanks and one robotic, the tank of the researched problem is responsible for processing the job, and the robotic moves the job from one tank to the other tank. The difference between the researched problem and the classic shop scheduling problem is that the former must consider job scheduling and the robotic move sequence, but the latter considers only job scheduling. For optimizing simultaneously job scheduling and robotic move sequence in the proposed problem and minimizing total earliness/tardiness, an improved NEH (Nawaz-Enscore-Ham) and variable search (INEH-VNS) algorithm are developed. In the proposed method, firstly, to obtain initial solution, an improved NEH is shown. Secondly, for computing value of the objective function, the double procedure method is constructed. Thirdly, according to the properties of the proposed problem, three neighborhood structures, adjacent exchange, random insertion, and job exchange, are investigated. To test the performance of the INEH-VNS, 100 instances are randomly generated. When the run time is the same, compared with CPLEX 12.5, the INEH-VNS algorithm can find high-quality approximate optimal solution, a special big scale. Compared with the G-VNS algorithm, the average improvement rate of the approximate optimal solution is 45.9%, and the average stability rate of the INEH-VNS algorithm enhances 75.04%. That is to say, the INEH-VNS algorithm is outstanding and more effective.\",\"PeriodicalId\":49251,\"journal\":{\"name\":\"Journal of Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6680897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6680897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了准时制环境下的自动生产系统调度问题。自动生产系统由多个槽和一个机器人组成,研究问题中的槽负责处理作业,机器人将作业从一个槽移动到另一个槽。所研究的问题与传统的车间调度问题的区别在于,前者必须考虑作业调度和机器人移动顺序,而后者只考虑作业调度。为了同时优化所提问题中的作业调度和机器人移动顺序,并最大限度地减少总迟到/迟到时间,开发了一种改进的 NEH(Nawaz-Enscore-Ham)和变量搜索(INEH-VNS)算法。在所提出的方法中,首先,为了获得初始解,展示了一种改进的 NEH。其次,为计算目标函数值,构建了双程序法。第三,根据所提问题的特性,研究了相邻交换、随机插入和工作交换三种邻域结构。为了测试 INEH-VNS 的性能,随机生成了 100 个实例。在运行时间相同的情况下,与 CPLEX 12.5 相比,INEH-VNS 算法能找到高质量的近似最优解,规模特别大。与 G-VNS 算法相比,近似最优解的平均改进率为 45.9%,INEH-VNS 算法的平均稳定率提高了 75.04%。也就是说,INEH-VNS 算法的效果更突出、更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
INEH-VNS Algorithm Solved Automatic Production System Scheduling Problem under Just-in-Time Environment
Automatic production system scheduling problem under a just-in-time environment is researched in this paper. The automatic production system is composed of many tanks and one robotic, the tank of the researched problem is responsible for processing the job, and the robotic moves the job from one tank to the other tank. The difference between the researched problem and the classic shop scheduling problem is that the former must consider job scheduling and the robotic move sequence, but the latter considers only job scheduling. For optimizing simultaneously job scheduling and robotic move sequence in the proposed problem and minimizing total earliness/tardiness, an improved NEH (Nawaz-Enscore-Ham) and variable search (INEH-VNS) algorithm are developed. In the proposed method, firstly, to obtain initial solution, an improved NEH is shown. Secondly, for computing value of the objective function, the double procedure method is constructed. Thirdly, according to the properties of the proposed problem, three neighborhood structures, adjacent exchange, random insertion, and job exchange, are investigated. To test the performance of the INEH-VNS, 100 instances are randomly generated. When the run time is the same, compared with CPLEX 12.5, the INEH-VNS algorithm can find high-quality approximate optimal solution, a special big scale. Compared with the G-VNS algorithm, the average improvement rate of the approximate optimal solution is 45.9%, and the average stability rate of the INEH-VNS algorithm enhances 75.04%. That is to say, the INEH-VNS algorithm is outstanding and more effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics
Journal of Applied Mathematics MATHEMATICS, APPLIED-
CiteScore
2.70
自引率
0.00%
发文量
58
审稿时长
3.2 months
期刊介绍: Journal of Applied Mathematics is a refereed journal devoted to the publication of original research papers and review articles in all areas of applied, computational, and industrial mathematics.
期刊最新文献
Modeling the Transmission Routes of Hepatitis E Virus as a Zoonotic Disease Using Fractional-Order Derivative The Sequential Conformable Langevin-Type Differential Equations and Their Applications to the RLC Electric Circuit Problems Symmetric Encryption Algorithms in a Polynomial Residue Number System Tensor Product Technique and Atomic Solution of Fractional Partial Differential Equations Mathematical Modeling of the Transmission Dynamics of Gumboro Disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1