通过逐时神经信号分解进行神经肌肉状态估计

Avinash Baskaran, David Hollinger, Rhet O. Hailey, Michael Zabala, Chad G Rose
{"title":"通过逐时神经信号分解进行神经肌肉状态估计","authors":"Avinash Baskaran, David Hollinger, Rhet O. Hailey, Michael Zabala, Chad G Rose","doi":"10.1115/1.4064069","DOIUrl":null,"url":null,"abstract":"Robotic exoskeletons for the hand are being explored to improve health, safety, and physical performance. However, much research effort is needed to establish reliable models of human behavior for effective human-robot interaction control. In this work, surface electromyography is used to measure and model muscle activity of healthy participants performing quasi-isometric and dynamic hand exercises. Non-negative matrix tri-factorization (NM3F) is used to extract hidden neuromuscular parameters encoded in spatial and temporal muscle synergies, which are used to estimate probabilistic linear models of intent, effort, and fatigue. This paper thereby presents steps toward reliable modeling of nonlinear time-varying hand neuromuscular dynamics for intuitive and robust human-robot interaction.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromuscular State Estimation via Space-by-Time Neural Signal Decomposition\",\"authors\":\"Avinash Baskaran, David Hollinger, Rhet O. Hailey, Michael Zabala, Chad G Rose\",\"doi\":\"10.1115/1.4064069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic exoskeletons for the hand are being explored to improve health, safety, and physical performance. However, much research effort is needed to establish reliable models of human behavior for effective human-robot interaction control. In this work, surface electromyography is used to measure and model muscle activity of healthy participants performing quasi-isometric and dynamic hand exercises. Non-negative matrix tri-factorization (NM3F) is used to extract hidden neuromuscular parameters encoded in spatial and temporal muscle synergies, which are used to estimate probabilistic linear models of intent, effort, and fatigue. This paper thereby presents steps toward reliable modeling of nonlinear time-varying hand neuromuscular dynamics for intuitive and robust human-robot interaction.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人们正在探索手部机器人外骨骼,以改善健康、安全和体能。然而,要建立可靠的人类行为模型以实现有效的人机交互控制,还需要大量的研究工作。在这项工作中,使用表面肌电图测量健康参与者在进行准等距和动态手部运动时的肌肉活动并建立模型。非负矩阵三因子化(NM3F)用于提取空间和时间肌肉协同中编码的隐藏神经肌肉参数,这些参数用于估计意图、努力和疲劳的概率线性模型。因此,本文提出了可靠的非线性时变手部神经肌肉动力学建模步骤,以实现直观、稳健的人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neuromuscular State Estimation via Space-by-Time Neural Signal Decomposition
Robotic exoskeletons for the hand are being explored to improve health, safety, and physical performance. However, much research effort is needed to establish reliable models of human behavior for effective human-robot interaction control. In this work, surface electromyography is used to measure and model muscle activity of healthy participants performing quasi-isometric and dynamic hand exercises. Non-negative matrix tri-factorization (NM3F) is used to extract hidden neuromuscular parameters encoded in spatial and temporal muscle synergies, which are used to estimate probabilistic linear models of intent, effort, and fatigue. This paper thereby presents steps toward reliable modeling of nonlinear time-varying hand neuromuscular dynamics for intuitive and robust human-robot interaction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1