关于幂克里斯-杰里分布:性质和参数估计方法

Christiana I. Ezeilo, Onyeagu Sidney I., E. Umeh, C. K. Onyekwere
{"title":"关于幂克里斯-杰里分布:性质和参数估计方法","authors":"Christiana I. Ezeilo, Onyeagu Sidney I., E. Umeh, C. K. Onyekwere","doi":"10.9734/ajpas/2023/v25i3562","DOIUrl":null,"url":null,"abstract":"In this study, we introduce the \"Power Chris-Jerry\" distribution, conducting a comprehensive analysis of its fundamental mathematical characteristics and an extensive exploration of various crucial aspects. These encompass investigations into its mode, quantile function, moments, coefficient of skewness, kurtosis, moment generating function, stochastic ordering, distribution of order statistics, reliability analysis, and mean past lifetime. Furthermore, we provide an in-depth assessment of four distinct parameter estimation methodologies: maximum likelihood estimation (MLE), Least Squares (LS), maximum product spacing method (MPS), and the Method of Cram`er-von-Mises (CVM). Our investigation uncovers a consistent pattern wherein the MLE, LS, and CVM approaches consistently yield underestimated parameter values. Intriguingly, we observe a consistent trend of decreasing Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and BIAS across all estimation techniques as sample sizes increase. Remarkably, our simulation results consistently favor the Maximum Product Spacing (MPS) method, highlighting its superiority in generating estimates with smaller MSE values across a broad spectrum of parameter values and sample sizes. These findings emphasize the robustness and dependability of the MPS estimator, offering valuable insights and practical guidance for both practitioners and researchers engaged in probability distribution modeling.","PeriodicalId":8532,"journal":{"name":"Asian Journal of Probability and Statistics","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Power Chris-Jerry Distribution: Properties and Parameter Estimation Methods\",\"authors\":\"Christiana I. Ezeilo, Onyeagu Sidney I., E. Umeh, C. K. Onyekwere\",\"doi\":\"10.9734/ajpas/2023/v25i3562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce the \\\"Power Chris-Jerry\\\" distribution, conducting a comprehensive analysis of its fundamental mathematical characteristics and an extensive exploration of various crucial aspects. These encompass investigations into its mode, quantile function, moments, coefficient of skewness, kurtosis, moment generating function, stochastic ordering, distribution of order statistics, reliability analysis, and mean past lifetime. Furthermore, we provide an in-depth assessment of four distinct parameter estimation methodologies: maximum likelihood estimation (MLE), Least Squares (LS), maximum product spacing method (MPS), and the Method of Cram`er-von-Mises (CVM). Our investigation uncovers a consistent pattern wherein the MLE, LS, and CVM approaches consistently yield underestimated parameter values. Intriguingly, we observe a consistent trend of decreasing Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and BIAS across all estimation techniques as sample sizes increase. Remarkably, our simulation results consistently favor the Maximum Product Spacing (MPS) method, highlighting its superiority in generating estimates with smaller MSE values across a broad spectrum of parameter values and sample sizes. These findings emphasize the robustness and dependability of the MPS estimator, offering valuable insights and practical guidance for both practitioners and researchers engaged in probability distribution modeling.\",\"PeriodicalId\":8532,\"journal\":{\"name\":\"Asian Journal of Probability and Statistics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Probability and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ajpas/2023/v25i3562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ajpas/2023/v25i3562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们介绍了 "Power Chris-Jerry "分布,对其基本数学特征进行了全面分析,并对各个关键方面进行了广泛探讨。其中包括对其模式、量化函数、矩、偏度系数、峰度系数、矩产生函数、随机排序、阶次统计分布、可靠性分析和过去平均寿命的研究。此外,我们还深入评估了四种不同的参数估计方法:最大似然估计法(MLE)、最小二乘法(LS)、最大积距法(MPS)和克拉默-冯-米塞斯法(CVM)。我们的研究发现了一种一致的模式,即 MLE、LS 和 CVM 方法始终会产生被低估的参数值。有趣的是,我们观察到,随着样本量的增加,所有估计技术的均方误差(MSE)、均方根误差(RMSE)和误差率(BIAS)都呈下降趋势。值得注意的是,我们的模拟结果始终倾向于最大乘积间隔法(MPS),凸显了其在广泛的参数值和样本量范围内生成具有较小 MSE 值的估计值的优越性。这些发现强调了 MPS 估计法的稳健性和可靠性,为从事概率分布建模的从业人员和研究人员提供了宝贵的见解和实用指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Power Chris-Jerry Distribution: Properties and Parameter Estimation Methods
In this study, we introduce the "Power Chris-Jerry" distribution, conducting a comprehensive analysis of its fundamental mathematical characteristics and an extensive exploration of various crucial aspects. These encompass investigations into its mode, quantile function, moments, coefficient of skewness, kurtosis, moment generating function, stochastic ordering, distribution of order statistics, reliability analysis, and mean past lifetime. Furthermore, we provide an in-depth assessment of four distinct parameter estimation methodologies: maximum likelihood estimation (MLE), Least Squares (LS), maximum product spacing method (MPS), and the Method of Cram`er-von-Mises (CVM). Our investigation uncovers a consistent pattern wherein the MLE, LS, and CVM approaches consistently yield underestimated parameter values. Intriguingly, we observe a consistent trend of decreasing Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and BIAS across all estimation techniques as sample sizes increase. Remarkably, our simulation results consistently favor the Maximum Product Spacing (MPS) method, highlighting its superiority in generating estimates with smaller MSE values across a broad spectrum of parameter values and sample sizes. These findings emphasize the robustness and dependability of the MPS estimator, offering valuable insights and practical guidance for both practitioners and researchers engaged in probability distribution modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bayesian Sequential Updation and Prediction of Currency in Circulation Using a Weighted Prior Assessment of Required Sample Sizes for Estimating Proportions Rainfall Pattern in Kenya: Bayesian Non-parametric Model Based on the Normalized Generalized Gamma Process Advancing Retail Predictions: Integrating Diverse Machine Learning Models for Accurate Walmart Sales Forecasting Common Fixed-Point Theorem for Expansive Mappings in Dualistic Partial Metric Spaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1