Beyza Ozgen, S. P. Şenol, Dilsah Ezgi Yilmaz, Meryem Temiz-Reşitoğlu, Omer Bahceli, B. Tunctan
{"title":"坏死抑制剂新磺酰胺可改善脂多糖诱发的小鼠炎症性痛觉减退症","authors":"Beyza Ozgen, S. P. Şenol, Dilsah Ezgi Yilmaz, Meryem Temiz-Reşitoğlu, Omer Bahceli, B. Tunctan","doi":"10.3897/pharmacia.70.e108995","DOIUrl":null,"url":null,"abstract":"Objectives: This study aimed to investigate the effect of the gasdermin D (GSDMD) and mixed lineage kinase domain-like pseudokinase (MLKL) inhibitor, necrosulfonamide (NSA), on lipopolysaccharide (LPS)-induced hyperalgesia in mice. Methods: Reaction time to a thermal stimulus within 30 seconds was measured in male mice injected with saline, LPS, and/or NSA after 6 hours using the hot plate test. Immunoblotting studies were performed to determine changes in caspase-11/GSDMD-mediated pyroptosis, receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/MLKL necrosome-mediated necroptosis, demyelination, and remyelination in the brains and spinal cords of animals. Results: NSA demonstrated significant antinociceptive activity compared with LPS-treated mice. In the tissues of LPS-treated mice, NSA decreased expression of caspase-11 p20, p30-GSDMD, interleukin-1β, high-mobility-group-box 1, and semaphorin 3A, and activity of RIPK1, RIPK3, and MLKL. NSA also increased the expression of myelin proteolipid protein. Conclusion: Therefore, NSA may have therapeutic potential in the treatment of inflammatory painful conditions due to bacterial infections.","PeriodicalId":20086,"journal":{"name":"Pharmacia","volume":"26 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyroptosis and necroptosis inhibitor necrosulfonamide ameliorates lipopolysaccharide-induced inflammatory hyperalgesia in mice\",\"authors\":\"Beyza Ozgen, S. P. Şenol, Dilsah Ezgi Yilmaz, Meryem Temiz-Reşitoğlu, Omer Bahceli, B. Tunctan\",\"doi\":\"10.3897/pharmacia.70.e108995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: This study aimed to investigate the effect of the gasdermin D (GSDMD) and mixed lineage kinase domain-like pseudokinase (MLKL) inhibitor, necrosulfonamide (NSA), on lipopolysaccharide (LPS)-induced hyperalgesia in mice. Methods: Reaction time to a thermal stimulus within 30 seconds was measured in male mice injected with saline, LPS, and/or NSA after 6 hours using the hot plate test. Immunoblotting studies were performed to determine changes in caspase-11/GSDMD-mediated pyroptosis, receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/MLKL necrosome-mediated necroptosis, demyelination, and remyelination in the brains and spinal cords of animals. Results: NSA demonstrated significant antinociceptive activity compared with LPS-treated mice. In the tissues of LPS-treated mice, NSA decreased expression of caspase-11 p20, p30-GSDMD, interleukin-1β, high-mobility-group-box 1, and semaphorin 3A, and activity of RIPK1, RIPK3, and MLKL. NSA also increased the expression of myelin proteolipid protein. Conclusion: Therefore, NSA may have therapeutic potential in the treatment of inflammatory painful conditions due to bacterial infections.\",\"PeriodicalId\":20086,\"journal\":{\"name\":\"Pharmacia\",\"volume\":\"26 6\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/pharmacia.70.e108995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/pharmacia.70.e108995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Pyroptosis and necroptosis inhibitor necrosulfonamide ameliorates lipopolysaccharide-induced inflammatory hyperalgesia in mice
Objectives: This study aimed to investigate the effect of the gasdermin D (GSDMD) and mixed lineage kinase domain-like pseudokinase (MLKL) inhibitor, necrosulfonamide (NSA), on lipopolysaccharide (LPS)-induced hyperalgesia in mice. Methods: Reaction time to a thermal stimulus within 30 seconds was measured in male mice injected with saline, LPS, and/or NSA after 6 hours using the hot plate test. Immunoblotting studies were performed to determine changes in caspase-11/GSDMD-mediated pyroptosis, receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/MLKL necrosome-mediated necroptosis, demyelination, and remyelination in the brains and spinal cords of animals. Results: NSA demonstrated significant antinociceptive activity compared with LPS-treated mice. In the tissues of LPS-treated mice, NSA decreased expression of caspase-11 p20, p30-GSDMD, interleukin-1β, high-mobility-group-box 1, and semaphorin 3A, and activity of RIPK1, RIPK3, and MLKL. NSA also increased the expression of myelin proteolipid protein. Conclusion: Therefore, NSA may have therapeutic potential in the treatment of inflammatory painful conditions due to bacterial infections.