基于电网恢复能力评估的需求侧资源快速分区决策方法

Yueping Kong, Shihai Yang, Meimei Duan, Yuqi Zhou, Zecheng Ding, Tingquan Zhang, Ju Sheng
{"title":"基于电网恢复能力评估的需求侧资源快速分区决策方法","authors":"Yueping Kong, Shihai Yang, Meimei Duan, Yuqi Zhou, Zecheng Ding, Tingquan Zhang, Ju Sheng","doi":"10.3389/fenrg.2023.1301175","DOIUrl":null,"url":null,"abstract":"With the large-scale renewable energy integrated into the distribution grid, the grid’s regulating ability and disturbance tolerance are weakening. When partitioning demand-side resources, it is necessary to enhance resilience to ensure the reliability of electric power. This paper proposes a fast-partitioning method that considers resilience, structure, and functionality to adapt to the evolving requirements of the distribution system. Specifically, the comprehensive partition index system is constructed with the resilience assessment index reflecting the ability of partitions to withstand and mitigate the effects of faults, the modularity index based on electrical distance, and regional power balance indexes. Meanwhile, a modified genetic algorithm is proposed to calculate the comprehensive partition index. The modified algorithm first uses a sensitivity matrix to perform initial partitions and construct initial populations. Then, it utilizes a triangular network adjacency matrix for chromosome encoding, significantly reducing the algorithm’s search space and enhancing partitioning efficiency. Finally, the applicability and effectiveness of the proposed method are verified through simulation analysis of the IEEE 28-node system.","PeriodicalId":503838,"journal":{"name":"Frontiers in Energy Research","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fast-partitioning decision method for demand side resources based on grid resilience assessment\",\"authors\":\"Yueping Kong, Shihai Yang, Meimei Duan, Yuqi Zhou, Zecheng Ding, Tingquan Zhang, Ju Sheng\",\"doi\":\"10.3389/fenrg.2023.1301175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the large-scale renewable energy integrated into the distribution grid, the grid’s regulating ability and disturbance tolerance are weakening. When partitioning demand-side resources, it is necessary to enhance resilience to ensure the reliability of electric power. This paper proposes a fast-partitioning method that considers resilience, structure, and functionality to adapt to the evolving requirements of the distribution system. Specifically, the comprehensive partition index system is constructed with the resilience assessment index reflecting the ability of partitions to withstand and mitigate the effects of faults, the modularity index based on electrical distance, and regional power balance indexes. Meanwhile, a modified genetic algorithm is proposed to calculate the comprehensive partition index. The modified algorithm first uses a sensitivity matrix to perform initial partitions and construct initial populations. Then, it utilizes a triangular network adjacency matrix for chromosome encoding, significantly reducing the algorithm’s search space and enhancing partitioning efficiency. Finally, the applicability and effectiveness of the proposed method are verified through simulation analysis of the IEEE 28-node system.\",\"PeriodicalId\":503838,\"journal\":{\"name\":\"Frontiers in Energy Research\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fenrg.2023.1301175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenrg.2023.1301175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着大规模可再生能源并入配电网,电网的调节能力和抗干扰能力不断减弱。在对需求侧资源进行分区时,有必要提高其弹性,以确保电力的可靠性。本文提出了一种兼顾弹性、结构和功能的快速分区方法,以适应配电系统不断发展的要求。具体而言,通过反映分区抵御和减轻故障影响能力的复原力评估指标、基于电气距离的模块化指标和区域电力平衡指标,构建了综合分区指标体系。同时,提出了一种改进的遗传算法来计算综合分区指数。改进后的算法首先使用灵敏度矩阵进行初始分区并构建初始种群。然后,利用三角形网络邻接矩阵进行染色体编码,大大缩小了算法的搜索空间,提高了分区效率。最后,通过对 IEEE 28 节点系统的仿真分析,验证了所提方法的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fast-partitioning decision method for demand side resources based on grid resilience assessment
With the large-scale renewable energy integrated into the distribution grid, the grid’s regulating ability and disturbance tolerance are weakening. When partitioning demand-side resources, it is necessary to enhance resilience to ensure the reliability of electric power. This paper proposes a fast-partitioning method that considers resilience, structure, and functionality to adapt to the evolving requirements of the distribution system. Specifically, the comprehensive partition index system is constructed with the resilience assessment index reflecting the ability of partitions to withstand and mitigate the effects of faults, the modularity index based on electrical distance, and regional power balance indexes. Meanwhile, a modified genetic algorithm is proposed to calculate the comprehensive partition index. The modified algorithm first uses a sensitivity matrix to perform initial partitions and construct initial populations. Then, it utilizes a triangular network adjacency matrix for chromosome encoding, significantly reducing the algorithm’s search space and enhancing partitioning efficiency. Finally, the applicability and effectiveness of the proposed method are verified through simulation analysis of the IEEE 28-node system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research and design for a storage liquid refrigerator considering the characteristics of energy storage batteries Transaction strategy of virtual power plants and multi-energy systems with multi-agent Stackelberg game based on integrated energy-carbon pricing The analysis of the threshold value of the complex short-circuit ratio index and its significance in the context of static voltage stability Overview of the PI (2DoF) algorithm in wind power system optimization and control A stochastic power flow-based static security assessment under uncertain scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1