Dhvanil Chauhan, M. Makhesana, R. R. Rahman Rashid, Vivek Joshi, Navneet Khanna
{"title":"基于刀具磨损、表面粗糙度和功耗的干式和低温技术下 Ti-6Al-4V 加工性能比较","authors":"Dhvanil Chauhan, M. Makhesana, R. R. Rahman Rashid, Vivek Joshi, Navneet Khanna","doi":"10.3390/lubricants11110493","DOIUrl":null,"url":null,"abstract":"The machining of Ti-6Al-4V alloys is challenging due to their high strength, poor thermal conductivity, and high chemical reactivity. When used in traditional machining, cryogenic coolants can reduce tool wear, thus extending tool life, improving surface finish, and requiring less power with reduced environmental effects. In this context, this study aimed to perform a machinability analysis of the surface roughness, power consumption, tool wear, and specific energy consumption of a Ti-6Al-4V titanium alloy and to comprehend the performance of dry and cryogenic machining in turning operations. A comprehensive analysis of tool wear and specific cutting energy (SCE) under dry and cryogenic machining was conducted. It was found that the machining time under a cryogenic environment was increased by 83% and 39% at 80 and 90 m/min compared to a cutting speed at 100 m/min. The higher cutting speed (100 m/min) in cryogenic environments produced an improved surface finish. Compared to dry machining, the cooling effect of liquid CO2 helped dissipate heat and reduce thermal damage, improving surface finish. The findings revealed that in dry conditions, approximately 5.55%, 26.45%, and 27.61% less power was consumed than in cryogenic conditions at 80, 90, and 100 m/min cutting speeds, respectively. Based on the outcomes of the work, the application of cryogenic cooling can be considered an alternative to dry and flood cooling for improving the machinability of Ti-6Al-4V alloys.","PeriodicalId":18135,"journal":{"name":"Lubricants","volume":"35 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Machining Performance of Ti-6Al-4V under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption\",\"authors\":\"Dhvanil Chauhan, M. Makhesana, R. R. Rahman Rashid, Vivek Joshi, Navneet Khanna\",\"doi\":\"10.3390/lubricants11110493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The machining of Ti-6Al-4V alloys is challenging due to their high strength, poor thermal conductivity, and high chemical reactivity. When used in traditional machining, cryogenic coolants can reduce tool wear, thus extending tool life, improving surface finish, and requiring less power with reduced environmental effects. In this context, this study aimed to perform a machinability analysis of the surface roughness, power consumption, tool wear, and specific energy consumption of a Ti-6Al-4V titanium alloy and to comprehend the performance of dry and cryogenic machining in turning operations. A comprehensive analysis of tool wear and specific cutting energy (SCE) under dry and cryogenic machining was conducted. It was found that the machining time under a cryogenic environment was increased by 83% and 39% at 80 and 90 m/min compared to a cutting speed at 100 m/min. The higher cutting speed (100 m/min) in cryogenic environments produced an improved surface finish. Compared to dry machining, the cooling effect of liquid CO2 helped dissipate heat and reduce thermal damage, improving surface finish. The findings revealed that in dry conditions, approximately 5.55%, 26.45%, and 27.61% less power was consumed than in cryogenic conditions at 80, 90, and 100 m/min cutting speeds, respectively. Based on the outcomes of the work, the application of cryogenic cooling can be considered an alternative to dry and flood cooling for improving the machinability of Ti-6Al-4V alloys.\",\"PeriodicalId\":18135,\"journal\":{\"name\":\"Lubricants\",\"volume\":\"35 4\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lubricants\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/lubricants11110493\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lubricants","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/lubricants11110493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Comparison of Machining Performance of Ti-6Al-4V under Dry and Cryogenic Techniques Based on Tool Wear, Surface Roughness, and Power Consumption
The machining of Ti-6Al-4V alloys is challenging due to their high strength, poor thermal conductivity, and high chemical reactivity. When used in traditional machining, cryogenic coolants can reduce tool wear, thus extending tool life, improving surface finish, and requiring less power with reduced environmental effects. In this context, this study aimed to perform a machinability analysis of the surface roughness, power consumption, tool wear, and specific energy consumption of a Ti-6Al-4V titanium alloy and to comprehend the performance of dry and cryogenic machining in turning operations. A comprehensive analysis of tool wear and specific cutting energy (SCE) under dry and cryogenic machining was conducted. It was found that the machining time under a cryogenic environment was increased by 83% and 39% at 80 and 90 m/min compared to a cutting speed at 100 m/min. The higher cutting speed (100 m/min) in cryogenic environments produced an improved surface finish. Compared to dry machining, the cooling effect of liquid CO2 helped dissipate heat and reduce thermal damage, improving surface finish. The findings revealed that in dry conditions, approximately 5.55%, 26.45%, and 27.61% less power was consumed than in cryogenic conditions at 80, 90, and 100 m/min cutting speeds, respectively. Based on the outcomes of the work, the application of cryogenic cooling can be considered an alternative to dry and flood cooling for improving the machinability of Ti-6Al-4V alloys.
期刊介绍:
This journal is dedicated to the field of Tribology and closely related disciplines. This includes the fundamentals of the following topics: -Lubrication, comprising hydrostatics, hydrodynamics, elastohydrodynamics, mixed and boundary regimes of lubrication -Friction, comprising viscous shear, Newtonian and non-Newtonian traction, boundary friction -Wear, including adhesion, abrasion, tribo-corrosion, scuffing and scoring -Cavitation and erosion -Sub-surface stressing, fatigue spalling, pitting, micro-pitting -Contact Mechanics: elasticity, elasto-plasticity, adhesion, viscoelasticity, poroelasticity, coatings and solid lubricants, layered bonded and unbonded solids -Surface Science: topography, tribo-film formation, lubricant–surface combination, surface texturing, micro-hydrodynamics, micro-elastohydrodynamics -Rheology: Newtonian, non-Newtonian fluids, dilatants, pseudo-plastics, thixotropy, shear thinning -Physical chemistry of lubricants, boundary active species, adsorption, bonding