{"title":"利用混合回归模型对塑料注射成型工艺的时间序列能耗进行聚类","authors":"Massimo Pacella, Matteo Mangini, G. Papadia","doi":"10.3390/a16110524","DOIUrl":null,"url":null,"abstract":"Considering the issue of energy consumption reduction in industrial plants, we investigated a clustering method for mining the time-series data related to energy consumption. The industrial case study considered in our work is one of the most energy-intensive processes in the plastics industry: the plastic injection molding process. Concerning the industrial setting, the energy consumption of the injection molding machine was monitored across multiple injection molding cycles. The collected data were then analyzed to establish patterns and trends in the energy consumption of the injection molding process. To this end, we considered mixtures of regression models given their flexibility in modeling heterogeneous time series and clustering time series in an unsupervised machine learning framework. Given the assumption of autocorrelated data and exogenous variables in the mixture model, we implemented an algorithm for model fitting that combined autocorrelated observations with spline and polynomial regressions. Our results demonstrate an accurate grouping of energy-consumption profiles, where each cluster is related to a specific production schedule. The clustering method also provides a unique profile of energy consumption for each cluster, depending on the production schedule and regression approach (i.e., spline and polynomial). According to these profiles, information related to the shape of energy consumption was identified, providing insights into reducing the electrical demand of the plant.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"70 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Mixture Regression Models for Clustering Time-Series Energy Consumption of a Plastic Injection Molding Process\",\"authors\":\"Massimo Pacella, Matteo Mangini, G. Papadia\",\"doi\":\"10.3390/a16110524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the issue of energy consumption reduction in industrial plants, we investigated a clustering method for mining the time-series data related to energy consumption. The industrial case study considered in our work is one of the most energy-intensive processes in the plastics industry: the plastic injection molding process. Concerning the industrial setting, the energy consumption of the injection molding machine was monitored across multiple injection molding cycles. The collected data were then analyzed to establish patterns and trends in the energy consumption of the injection molding process. To this end, we considered mixtures of regression models given their flexibility in modeling heterogeneous time series and clustering time series in an unsupervised machine learning framework. Given the assumption of autocorrelated data and exogenous variables in the mixture model, we implemented an algorithm for model fitting that combined autocorrelated observations with spline and polynomial regressions. Our results demonstrate an accurate grouping of energy-consumption profiles, where each cluster is related to a specific production schedule. The clustering method also provides a unique profile of energy consumption for each cluster, depending on the production schedule and regression approach (i.e., spline and polynomial). According to these profiles, information related to the shape of energy consumption was identified, providing insights into reducing the electrical demand of the plant.\",\"PeriodicalId\":7636,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"70 3\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a16110524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Utilizing Mixture Regression Models for Clustering Time-Series Energy Consumption of a Plastic Injection Molding Process
Considering the issue of energy consumption reduction in industrial plants, we investigated a clustering method for mining the time-series data related to energy consumption. The industrial case study considered in our work is one of the most energy-intensive processes in the plastics industry: the plastic injection molding process. Concerning the industrial setting, the energy consumption of the injection molding machine was monitored across multiple injection molding cycles. The collected data were then analyzed to establish patterns and trends in the energy consumption of the injection molding process. To this end, we considered mixtures of regression models given their flexibility in modeling heterogeneous time series and clustering time series in an unsupervised machine learning framework. Given the assumption of autocorrelated data and exogenous variables in the mixture model, we implemented an algorithm for model fitting that combined autocorrelated observations with spline and polynomial regressions. Our results demonstrate an accurate grouping of energy-consumption profiles, where each cluster is related to a specific production schedule. The clustering method also provides a unique profile of energy consumption for each cluster, depending on the production schedule and regression approach (i.e., spline and polynomial). According to these profiles, information related to the shape of energy consumption was identified, providing insights into reducing the electrical demand of the plant.