结合机器学习和空间数据处理技术,分配基于自然的大规模解决方案

Beatriz Emma Gutierrez Caloir, Y. Abebe, Z. Vojinovic, Arlex Sanchez, Adam Mubeen, Laddaporn Ruangpan, N. Manojlovic, J. Plavšić, S. Djordjević
{"title":"结合机器学习和空间数据处理技术,分配基于自然的大规模解决方案","authors":"Beatriz Emma Gutierrez Caloir, Y. Abebe, Z. Vojinovic, Arlex Sanchez, Adam Mubeen, Laddaporn Ruangpan, N. Manojlovic, J. Plavšić, S. Djordjević","doi":"10.2166/bgs.2023.040","DOIUrl":null,"url":null,"abstract":"The escalating impacts of climate change trigger the necessity to deal with hydro-meteorological hazards. Nature-based solutions (NBSs) seem to be a suitable response, integrating the hydrology, geomorphology, hydraulic, and ecological dynamics. While there are some methods and tools for suitability mapping of small-scale NBSs, literature concerning the spatial allocation of large-scale NBSs is still lacking. The present work aims to develop new toolboxes and enhance an existing methodology by developing spatial analysis tools within a geographic information system (GIS) environment to allocate large-scale NBSs based on a multi-criteria algorithm. The methodologies combine machine learning spatial data processing techniques and hydrodynamic modelling for allocation of large-scale NBSs. The case studies concern selected areas in the Netherlands, Serbia, and Bolivia, focusing on three large-scale NBS: rainwater harvesting, wetland restoration, and natural riverbank stabilisation. Information available from the EC H2020 RECONECT project as well as other available data for the specific study areas was used. The research highlights the significance of incorporating machine learning, GIS, and remote sensing techniques for the suitable allocation of large-scale NBSs. The findings may offer new insights for decision-makers and other stakeholders involved in future sustainable environmental planning and climate change adaptation.","PeriodicalId":502858,"journal":{"name":"Blue-Green Systems","volume":"BME-33 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining machine learning and spatial data processing techniques for allocation of large-scale nature-based solutions\",\"authors\":\"Beatriz Emma Gutierrez Caloir, Y. Abebe, Z. Vojinovic, Arlex Sanchez, Adam Mubeen, Laddaporn Ruangpan, N. Manojlovic, J. Plavšić, S. Djordjević\",\"doi\":\"10.2166/bgs.2023.040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The escalating impacts of climate change trigger the necessity to deal with hydro-meteorological hazards. Nature-based solutions (NBSs) seem to be a suitable response, integrating the hydrology, geomorphology, hydraulic, and ecological dynamics. While there are some methods and tools for suitability mapping of small-scale NBSs, literature concerning the spatial allocation of large-scale NBSs is still lacking. The present work aims to develop new toolboxes and enhance an existing methodology by developing spatial analysis tools within a geographic information system (GIS) environment to allocate large-scale NBSs based on a multi-criteria algorithm. The methodologies combine machine learning spatial data processing techniques and hydrodynamic modelling for allocation of large-scale NBSs. The case studies concern selected areas in the Netherlands, Serbia, and Bolivia, focusing on three large-scale NBS: rainwater harvesting, wetland restoration, and natural riverbank stabilisation. Information available from the EC H2020 RECONECT project as well as other available data for the specific study areas was used. The research highlights the significance of incorporating machine learning, GIS, and remote sensing techniques for the suitable allocation of large-scale NBSs. The findings may offer new insights for decision-makers and other stakeholders involved in future sustainable environmental planning and climate change adaptation.\",\"PeriodicalId\":502858,\"journal\":{\"name\":\"Blue-Green Systems\",\"volume\":\"BME-33 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Blue-Green Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/bgs.2023.040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blue-Green Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/bgs.2023.040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气候变化的影响日益加剧,促使人们必须应对水文气象灾害。基于自然的解决方案(NBSs)似乎是一种合适的应对措施,它综合了水文、地貌、水力和生态动力学。虽然有一些方法和工具可用于绘制小规模 NBS 的适宜性地图,但有关大规模 NBS 空间分配的文献仍然缺乏。本研究旨在开发新的工具箱,并通过在地理信息系统(GIS)环境中开发空间分析工具来改进现有的方法,从而根据多标准算法分配大规模的核基础结构。这些方法结合了机器学习空间数据处理技术和流体力学模型,用于分配大规模核基础架构。案例研究涉及荷兰、塞尔维亚和玻利维亚的部分地区,重点关注三个大型国家基础结构:雨水收集、湿地恢复和自然河岸稳定。研究使用了欧洲委员会 H2020 RECONECT 项目提供的信息以及特定研究地区的其他可用数据。该研究强调了结合机器学习、地理信息系统和遥感技术对大规模国家基础结构进行适当分配的重要性。研究结果可为决策者和其他参与未来可持续环境规划和气候变化适应的利益相关者提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining machine learning and spatial data processing techniques for allocation of large-scale nature-based solutions
The escalating impacts of climate change trigger the necessity to deal with hydro-meteorological hazards. Nature-based solutions (NBSs) seem to be a suitable response, integrating the hydrology, geomorphology, hydraulic, and ecological dynamics. While there are some methods and tools for suitability mapping of small-scale NBSs, literature concerning the spatial allocation of large-scale NBSs is still lacking. The present work aims to develop new toolboxes and enhance an existing methodology by developing spatial analysis tools within a geographic information system (GIS) environment to allocate large-scale NBSs based on a multi-criteria algorithm. The methodologies combine machine learning spatial data processing techniques and hydrodynamic modelling for allocation of large-scale NBSs. The case studies concern selected areas in the Netherlands, Serbia, and Bolivia, focusing on three large-scale NBS: rainwater harvesting, wetland restoration, and natural riverbank stabilisation. Information available from the EC H2020 RECONECT project as well as other available data for the specific study areas was used. The research highlights the significance of incorporating machine learning, GIS, and remote sensing techniques for the suitable allocation of large-scale NBSs. The findings may offer new insights for decision-makers and other stakeholders involved in future sustainable environmental planning and climate change adaptation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Construction of wetlands in La Piedad Lagoon: a strategy to mitigate climate change in Mexico Construction of wetlands in La Piedad Lagoon: a strategy to mitigate climate change in Mexico Public preferences and willingness to pay for low impact development: a comparative case study of pilot sponge cities in China Combining machine learning and spatial data processing techniques for allocation of large-scale nature-based solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1