具有量化不确定性的贝叶斯逆向时间迁移

IF 3 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Geophysics Pub Date : 2023-11-15 DOI:10.1190/geo2022-0721.1
Shuang Wang, Xiangbo Gong, Xingguo Huang, Jing Rao, Kristian Jensen, Li Han, Naijian Wang, Xuliang Zhang
{"title":"具有量化不确定性的贝叶斯逆向时间迁移","authors":"Shuang Wang, Xiangbo Gong, Xingguo Huang, Jing Rao, Kristian Jensen, Li Han, Naijian Wang, Xuliang Zhang","doi":"10.1190/geo2022-0721.1","DOIUrl":null,"url":null,"abstract":"Reverse time migration (RTM) has been proven capable of producing high-quality images of subsurface structures. However, limited subsurface illumination combined with inaccurate forward modeling and migration velocities all lead to uncertainty in the seismic images. We quantify the migration uncertainty of RTM using an iterative inversion method based on a Bayesian inference framework. The posterior covariance matrix, computed at the maximum a posteriori (MAP) model, provides the foundation for estimating uncertainty. In the Bayesian inference framework, we combine an explicit sensitivity matrix based on a Green's function representation with an iterative extended Kalman filter (IEKF) method. This enables us to determine the MAP solution of RTM as well as an estimate of its uncertainty. Numerical examples using synthetic data demonstrate how well the method can measure RTM uncertainty and produce reliable imaging results.","PeriodicalId":55102,"journal":{"name":"Geophysics","volume":"41 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian reverse time migration with quantified uncertainty\",\"authors\":\"Shuang Wang, Xiangbo Gong, Xingguo Huang, Jing Rao, Kristian Jensen, Li Han, Naijian Wang, Xuliang Zhang\",\"doi\":\"10.1190/geo2022-0721.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse time migration (RTM) has been proven capable of producing high-quality images of subsurface structures. However, limited subsurface illumination combined with inaccurate forward modeling and migration velocities all lead to uncertainty in the seismic images. We quantify the migration uncertainty of RTM using an iterative inversion method based on a Bayesian inference framework. The posterior covariance matrix, computed at the maximum a posteriori (MAP) model, provides the foundation for estimating uncertainty. In the Bayesian inference framework, we combine an explicit sensitivity matrix based on a Green's function representation with an iterative extended Kalman filter (IEKF) method. This enables us to determine the MAP solution of RTM as well as an estimate of its uncertainty. Numerical examples using synthetic data demonstrate how well the method can measure RTM uncertainty and produce reliable imaging results.\",\"PeriodicalId\":55102,\"journal\":{\"name\":\"Geophysics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1190/geo2022-0721.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1190/geo2022-0721.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

反演时间迁移(RTM)已被证明能够生成高质量的地下结构图像。然而,有限的地下光照加上不准确的前向建模和迁移速度都会导致地震图像的不确定性。我们使用基于贝叶斯推理框架的迭代反演方法量化 RTM 的迁移不确定性。根据最大后验(MAP)模型计算的后验协方差矩阵为估计不确定性提供了基础。在贝叶斯推理框架中,我们将基于格林函数表示法的显式灵敏度矩阵与迭代扩展卡尔曼滤波(IEKF)方法相结合。这样,我们就能确定 RTM 的 MAP 解以及其不确定性的估计值。使用合成数据的数值示例证明了该方法能够很好地测量 RTM 的不确定性并生成可靠的成像结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian reverse time migration with quantified uncertainty
Reverse time migration (RTM) has been proven capable of producing high-quality images of subsurface structures. However, limited subsurface illumination combined with inaccurate forward modeling and migration velocities all lead to uncertainty in the seismic images. We quantify the migration uncertainty of RTM using an iterative inversion method based on a Bayesian inference framework. The posterior covariance matrix, computed at the maximum a posteriori (MAP) model, provides the foundation for estimating uncertainty. In the Bayesian inference framework, we combine an explicit sensitivity matrix based on a Green's function representation with an iterative extended Kalman filter (IEKF) method. This enables us to determine the MAP solution of RTM as well as an estimate of its uncertainty. Numerical examples using synthetic data demonstrate how well the method can measure RTM uncertainty and produce reliable imaging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysics
Geophysics 地学-地球化学与地球物理
CiteScore
6.90
自引率
18.20%
发文量
354
审稿时长
3 months
期刊介绍: Geophysics, published by the Society of Exploration Geophysicists since 1936, is an archival journal encompassing all aspects of research, exploration, and education in applied geophysics. Geophysics articles, generally more than 275 per year in six issues, cover the entire spectrum of geophysical methods, including seismology, potential fields, electromagnetics, and borehole measurements. Geophysics, a bimonthly, provides theoretical and mathematical tools needed to reproduce depicted work, encouraging further development and research. Geophysics papers, drawn from industry and academia, undergo a rigorous peer-review process to validate the described methods and conclusions and ensure the highest editorial and production quality. Geophysics editors strongly encourage the use of real data, including actual case histories, to highlight current technology and tutorials to stimulate ideas. Some issues feature a section of solicited papers on a particular subject of current interest. Recent special sections focused on seismic anisotropy, subsalt exploration and development, and microseismic monitoring. The PDF format of each Geophysics paper is the official version of record.
期刊最新文献
TRAIL C1595T Variant Critically Alters the Level of sTRAIL in Terms of Histopathological Parameters in Colorectal Cancer. The Effect of Height on Adverse Short-Term Outcomes After Lower-Extremity Bypass Surgery in Patients with Diabetes Mellitus. Stress-dependent reflection and transmission of elastic waves under confining, uniaxial, and pure shear prestresses DeepNRMS: Unsupervised deep learning for noise-robust CO2 monitoring in time-lapse seismic images Improvement of quality of life after 2-month exoskeleton training in patients with chronic spinal cord injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1