{"title":"动力机制中的屈曲评估,斯图尔特平台案例研究:在载荷和连接的背景下,挠曲位置梯度","authors":"R. Hassanian, M. Riedel","doi":"10.3390/computation11110227","DOIUrl":null,"url":null,"abstract":"This study introduces an approach for modeling an arm of a Stewart platform to analyze the location of sections with a high deflection among the arms. Given the dynamic nature of the Stewart platform, its arms experience static and dynamic loads. The static loads originate from the platform’s own weight components, while the dynamic loads arise from the movement or holding of equipment in a specific position using the end-effector. These loads are distributed among the platform arms. The arm encompasses various design categories, including spring-mass, spring-mass-damper, mass-actuator, and spring-mass-actuator. In accordance with these designs, joint points should be strategically placed away from critical sections where maximum buckling or deformation is prominent. The current study presents a novel model employing Euler’s formula, a fundamental concept in buckling analysis, to propose this approach. The results align with experimental and numerical reports in the literature that prove the internal force of the platform arm is affecting the arm stiffness. The equal stiffness of an arm is related to its internal force and its deflection. The study demonstrates how higher levels of dynamic loading influence the dynamic platform, causing variations in the maximum arm’s buckling deflection, its precise location, and the associated deflection slope. Notably, in platform arms capable of adjusting their tilt angles relative to the vertical axis, the angle of inclination directly correlates with deflection and its gradient. The assumption of linearity in Euler’s formula seems to reveal distinctive behavior in deflection gradients concerning dynamic mechanisms.","PeriodicalId":52148,"journal":{"name":"Computation","volume":"os28 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buckling Assessment in the Dynamics Mechanisms, Stewart Platform Case Study: In the Context of Loads and Joints, Deflection Positions Gradient\",\"authors\":\"R. Hassanian, M. Riedel\",\"doi\":\"10.3390/computation11110227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study introduces an approach for modeling an arm of a Stewart platform to analyze the location of sections with a high deflection among the arms. Given the dynamic nature of the Stewart platform, its arms experience static and dynamic loads. The static loads originate from the platform’s own weight components, while the dynamic loads arise from the movement or holding of equipment in a specific position using the end-effector. These loads are distributed among the platform arms. The arm encompasses various design categories, including spring-mass, spring-mass-damper, mass-actuator, and spring-mass-actuator. In accordance with these designs, joint points should be strategically placed away from critical sections where maximum buckling or deformation is prominent. The current study presents a novel model employing Euler’s formula, a fundamental concept in buckling analysis, to propose this approach. The results align with experimental and numerical reports in the literature that prove the internal force of the platform arm is affecting the arm stiffness. The equal stiffness of an arm is related to its internal force and its deflection. The study demonstrates how higher levels of dynamic loading influence the dynamic platform, causing variations in the maximum arm’s buckling deflection, its precise location, and the associated deflection slope. Notably, in platform arms capable of adjusting their tilt angles relative to the vertical axis, the angle of inclination directly correlates with deflection and its gradient. The assumption of linearity in Euler’s formula seems to reveal distinctive behavior in deflection gradients concerning dynamic mechanisms.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":\"os28 2\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation11110227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation11110227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Buckling Assessment in the Dynamics Mechanisms, Stewart Platform Case Study: In the Context of Loads and Joints, Deflection Positions Gradient
This study introduces an approach for modeling an arm of a Stewart platform to analyze the location of sections with a high deflection among the arms. Given the dynamic nature of the Stewart platform, its arms experience static and dynamic loads. The static loads originate from the platform’s own weight components, while the dynamic loads arise from the movement or holding of equipment in a specific position using the end-effector. These loads are distributed among the platform arms. The arm encompasses various design categories, including spring-mass, spring-mass-damper, mass-actuator, and spring-mass-actuator. In accordance with these designs, joint points should be strategically placed away from critical sections where maximum buckling or deformation is prominent. The current study presents a novel model employing Euler’s formula, a fundamental concept in buckling analysis, to propose this approach. The results align with experimental and numerical reports in the literature that prove the internal force of the platform arm is affecting the arm stiffness. The equal stiffness of an arm is related to its internal force and its deflection. The study demonstrates how higher levels of dynamic loading influence the dynamic platform, causing variations in the maximum arm’s buckling deflection, its precise location, and the associated deflection slope. Notably, in platform arms capable of adjusting their tilt angles relative to the vertical axis, the angle of inclination directly correlates with deflection and its gradient. The assumption of linearity in Euler’s formula seems to reveal distinctive behavior in deflection gradients concerning dynamic mechanisms.
期刊介绍:
Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.