单极太阳耀斑是 "拓扑 "磁重联的一种表现形式

Q1 Earth and Planetary Sciences Monthly Notices of the Royal Astronomical Society: Letters Pub Date : 2023-11-13 DOI:10.1093/mnrasl/slad162
Y. Dumin, B. Somov
{"title":"单极太阳耀斑是 \"拓扑 \"磁重联的一种表现形式","authors":"Y. Dumin, B. Somov","doi":"10.1093/mnrasl/slad162","DOIUrl":null,"url":null,"abstract":"Solar flares – the most prominent manifestation of solar activity – typically manifest themselves as a single or a set of luminous arcs (magnetic flux tubes) rooted in regions of opposite polarity in the photosphere. However, a careful analysis of archival data from the Hinode satellite reveals occasional surprising cases of flaring arcs whose footpoints belong to regions of the same polarity or to areas without any appreciable magnetic field. Despite the counterintuitive nature of this phenomenon, it can be reasonably interpreted in the framework of the so-called ‘topological model’ of magnetic reconnection, whereby a magnetic null point is formed owing to a specific superposition of influences from remote sources rather than by local current systems. As a result, the energy release propagates along the separator of a flipping two-dome structure rather than along a fixed magnetic field line. Therefore, the luminous arc no longer needs to be associated immediately with the magnetic sources. Here, we report observational cases of the above-mentioned type and provide a theoretical model and numerical simulations.","PeriodicalId":18951,"journal":{"name":"Monthly Notices of the Royal Astronomical Society: Letters","volume":"14 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unipolar solar flares as a manifestation of ‘topological’ magnetic reconnection\",\"authors\":\"Y. Dumin, B. Somov\",\"doi\":\"10.1093/mnrasl/slad162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar flares – the most prominent manifestation of solar activity – typically manifest themselves as a single or a set of luminous arcs (magnetic flux tubes) rooted in regions of opposite polarity in the photosphere. However, a careful analysis of archival data from the Hinode satellite reveals occasional surprising cases of flaring arcs whose footpoints belong to regions of the same polarity or to areas without any appreciable magnetic field. Despite the counterintuitive nature of this phenomenon, it can be reasonably interpreted in the framework of the so-called ‘topological model’ of magnetic reconnection, whereby a magnetic null point is formed owing to a specific superposition of influences from remote sources rather than by local current systems. As a result, the energy release propagates along the separator of a flipping two-dome structure rather than along a fixed magnetic field line. Therefore, the luminous arc no longer needs to be associated immediately with the magnetic sources. Here, we report observational cases of the above-mentioned type and provide a theoretical model and numerical simulations.\",\"PeriodicalId\":18951,\"journal\":{\"name\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"volume\":\"14 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monthly Notices of the Royal Astronomical Society: Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnrasl/slad162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Notices of the Royal Astronomical Society: Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnrasl/slad162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

太阳耀斑--太阳活动最突出的表现--通常表现为扎根于光球层中极性相反区域的单个或一组发光弧(磁通管)。然而,对日冕卫星的档案数据进行仔细分析后发现,偶尔会出现一些令人惊讶的耀弧,它们的脚点属于同一极性区域或没有任何明显磁场的区域。尽管这种现象具有反直觉的性质,但可以在所谓的磁重联 "拓扑模型 "框架内对其进行合理解释,即磁性空点的形成是由于来自远处的影响的特定叠加,而不是由本地电流系统造成的。因此,能量释放是沿着一个翻转的双圆顶结构的分离器而不是沿着一条固定的磁场线传播的。因此,发光弧不再需要立即与磁源联系在一起。在此,我们报告了上述类型的观测案例,并提供了理论模型和数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unipolar solar flares as a manifestation of ‘topological’ magnetic reconnection
Solar flares – the most prominent manifestation of solar activity – typically manifest themselves as a single or a set of luminous arcs (magnetic flux tubes) rooted in regions of opposite polarity in the photosphere. However, a careful analysis of archival data from the Hinode satellite reveals occasional surprising cases of flaring arcs whose footpoints belong to regions of the same polarity or to areas without any appreciable magnetic field. Despite the counterintuitive nature of this phenomenon, it can be reasonably interpreted in the framework of the so-called ‘topological model’ of magnetic reconnection, whereby a magnetic null point is formed owing to a specific superposition of influences from remote sources rather than by local current systems. As a result, the energy release propagates along the separator of a flipping two-dome structure rather than along a fixed magnetic field line. Therefore, the luminous arc no longer needs to be associated immediately with the magnetic sources. Here, we report observational cases of the above-mentioned type and provide a theoretical model and numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monthly Notices of the Royal Astronomical Society: Letters
Monthly Notices of the Royal Astronomical Society: Letters Earth and Planetary Sciences-Space and Planetary Science
CiteScore
8.80
自引率
0.00%
发文量
136
期刊介绍: For papers that merit urgent publication, MNRAS Letters, the online section of Monthly Notices of the Royal Astronomical Society, publishes short, topical and significant research in all fields of astronomy. Letters should be self-contained and describe the results of an original study whose rapid publication might be expected to have a significant influence on the subsequent development of research in the associated subject area. The 5-page limit must be respected. Authors are required to state their reasons for seeking publication in the form of a Letter when submitting their manuscript.
期刊最新文献
A tight N/O–potential relation in star-forming galaxies Constraining fundamental constants with fast radio bursts: Unveiling the role of energy scale TeV afterglow from GRB 221009A: photohadronic origin? Emirical calibration for helium abundance determinations in active galactic nuclei One-sided Hα excess before the first pericentre passage in galaxy Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1