综合能源利用优化和切削参数预测模型 - 辅助数控车床加工 Ti6Al4V 的工艺规划

N. Tayisepi, L. Mugwagwa, Margret Munyau, Takudzwa M. Muhla
{"title":"综合能源利用优化和切削参数预测模型 - 辅助数控车床加工 Ti6Al4V 的工艺规划","authors":"N. Tayisepi, L. Mugwagwa, Margret Munyau, Takudzwa M. Muhla","doi":"10.9734/jerr/2023/v25i101022","DOIUrl":null,"url":null,"abstract":"This paper reports on the IEUOCPPTM (Integrated Energy Use Optimisation and Cutting Parameters Prediction Tool Model) designed to optimise the machining parameters planning process of titanium alloy machining on the CNC lathe. It aimed to create a novel systematic methodology for determination of optimised cutting parameters. MATLAB genetic algorithm and Visual Basic Application softwares were integrated to generate the IEUOCPPTM optimised machining process planning tool for titanium alloys. The empirical 18 full factorial experiment runs design was carried out using Minitab. Determination of appropriate cutting parameters is vital for conserving energy and achieving sustainability for the titanium alloy machining businesses confronted with immense pressure to produce cost-effectively in record delivery times. Machining is a fundamental, and electrical energy intensive, activity in the profiling process of cylindrical T-alloy, Ti6Al4V, components used in the aerospace, automotive and general metal working industries. Varied performance outcomes were achieved, on the machined components after predicting the input parameters using the tool as opposed to the good-guess approach currently being applied in industry. Validation experiments confirmed functionality of IEUOCPPTM in forecasting the cutting parameter settings required, to achieve desired responses during machining of Ti6Al4V within an average error range of 8%.","PeriodicalId":340494,"journal":{"name":"Journal of Engineering Research and Reports","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated Energy Use Optimisation and Cutting Parameter Prediction Model - Aiding Process Planning of Ti6Al4V Machining on the CNC Lathe\",\"authors\":\"N. Tayisepi, L. Mugwagwa, Margret Munyau, Takudzwa M. Muhla\",\"doi\":\"10.9734/jerr/2023/v25i101022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports on the IEUOCPPTM (Integrated Energy Use Optimisation and Cutting Parameters Prediction Tool Model) designed to optimise the machining parameters planning process of titanium alloy machining on the CNC lathe. It aimed to create a novel systematic methodology for determination of optimised cutting parameters. MATLAB genetic algorithm and Visual Basic Application softwares were integrated to generate the IEUOCPPTM optimised machining process planning tool for titanium alloys. The empirical 18 full factorial experiment runs design was carried out using Minitab. Determination of appropriate cutting parameters is vital for conserving energy and achieving sustainability for the titanium alloy machining businesses confronted with immense pressure to produce cost-effectively in record delivery times. Machining is a fundamental, and electrical energy intensive, activity in the profiling process of cylindrical T-alloy, Ti6Al4V, components used in the aerospace, automotive and general metal working industries. Varied performance outcomes were achieved, on the machined components after predicting the input parameters using the tool as opposed to the good-guess approach currently being applied in industry. Validation experiments confirmed functionality of IEUOCPPTM in forecasting the cutting parameter settings required, to achieve desired responses during machining of Ti6Al4V within an average error range of 8%.\",\"PeriodicalId\":340494,\"journal\":{\"name\":\"Journal of Engineering Research and Reports\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research and Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/jerr/2023/v25i101022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jerr/2023/v25i101022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了 IEUOCPPTM(综合能源利用优化和切削参数预测工具模型),该模型旨在优化数控车床上钛合金加工的加工参数规划过程。其目的是为确定优化切削参数创建一种新颖的系统方法。MATLAB 遗传算法和 Visual Basic 应用软件相结合,生成了 IEUOCPPTM 优化钛合金加工工艺规划工具。使用 Minitab 进行了经验性 18 全因子实验运行设计。钛合金加工企业面临着在创纪录的交货时间内进行经济高效生产的巨大压力,因此确定适当的切削参数对于节约能源和实现可持续发展至关重要。在航空航天、汽车和一般金属加工行业使用的圆柱形 T 合金(Ti6Al4V)部件的仿形加工过程中,机加工是一项基本的电能密集型活动。通过使用工具预测输入参数,而不是目前工业中使用的良好猜测方法,在加工部件上实现了不同的性能结果。验证实验证实了 IEUOCPPTM 的功能,它可以预测所需的切削参数设置,从而在加工 Ti6Al4V 时实现所需的响应,平均误差范围为 8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Energy Use Optimisation and Cutting Parameter Prediction Model - Aiding Process Planning of Ti6Al4V Machining on the CNC Lathe
This paper reports on the IEUOCPPTM (Integrated Energy Use Optimisation and Cutting Parameters Prediction Tool Model) designed to optimise the machining parameters planning process of titanium alloy machining on the CNC lathe. It aimed to create a novel systematic methodology for determination of optimised cutting parameters. MATLAB genetic algorithm and Visual Basic Application softwares were integrated to generate the IEUOCPPTM optimised machining process planning tool for titanium alloys. The empirical 18 full factorial experiment runs design was carried out using Minitab. Determination of appropriate cutting parameters is vital for conserving energy and achieving sustainability for the titanium alloy machining businesses confronted with immense pressure to produce cost-effectively in record delivery times. Machining is a fundamental, and electrical energy intensive, activity in the profiling process of cylindrical T-alloy, Ti6Al4V, components used in the aerospace, automotive and general metal working industries. Varied performance outcomes were achieved, on the machined components after predicting the input parameters using the tool as opposed to the good-guess approach currently being applied in industry. Validation experiments confirmed functionality of IEUOCPPTM in forecasting the cutting parameter settings required, to achieve desired responses during machining of Ti6Al4V within an average error range of 8%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Machine Learning Model for Network Anomaly Detection: Support Vector Machine A Short Review of Yttria-Stabilized Zirconia (YSZ) for Thermal Barrier Coatings: Recent Progress The Affects of Ce Doping Cr\(_2\)O\(_3\) Based Catalysts Supported on Activated Carbon for 1,2-Dichloroethane Abatement Numerical Comparison of Cu and Al\(_2\) O\(_3\) Nanoparticles in an MHD Water-based Nanofluid Novel Illumination-invariant Face Recognition Approach via Reflectance-luminance and Local Matching Model with Weighted Voting System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1