改进稀疏表示的脑磁共振图像多图集分割算法

Hong Shi Hong Shi, Leiyi Gao Hong Shi, Ruixin Zhang Leiyi Gao, Junzhu Wang Ruixin Zhang, Hongxia Deng Junzhu Wang
{"title":"改进稀疏表示的脑磁共振图像多图集分割算法","authors":"Hong Shi Hong Shi, Leiyi Gao Hong Shi, Ruixin Zhang Leiyi Gao, Junzhu Wang Ruixin Zhang, Hongxia Deng Junzhu Wang","doi":"10.53106/160792642023112406019","DOIUrl":null,"url":null,"abstract":"Macaque brains are very close to human brains, so it’s an effective way to deepen the understanding of human brain functions by studying macaque brain structures. In order to segment subcortical nuclei of macaque brains more accurately, a multi-atlas segmentation algorithm based on an improved sparse representation has been designed in this paper. Firstly, a type of labeling information for atlas brain images is introduced when sparse patch-based representation is constructed, and then mutual information is improved by changing the calculation method of the information entropy, and it is used to measure the similarity between the target image and the atlas images. These two make the weights of the atlas more reasonable during fusion. Secondly, in order to fuse the segmentation results from two methods, nonlocal-patch-weighted method and the sparse representation method, a new similarity index based on a combination of dice coefficient and cosine distance is proposed. Finally, the experimental results show that this algorithm proposed in this paper has improved the accuracy of segmentation of hippocampus, striatum, claustrum and other nuclei, and it has better robustness.","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Atlas Segmentation Algorithm with An Improved Sparse Representation on Brain MR Images\",\"authors\":\"Hong Shi Hong Shi, Leiyi Gao Hong Shi, Ruixin Zhang Leiyi Gao, Junzhu Wang Ruixin Zhang, Hongxia Deng Junzhu Wang\",\"doi\":\"10.53106/160792642023112406019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Macaque brains are very close to human brains, so it’s an effective way to deepen the understanding of human brain functions by studying macaque brain structures. In order to segment subcortical nuclei of macaque brains more accurately, a multi-atlas segmentation algorithm based on an improved sparse representation has been designed in this paper. Firstly, a type of labeling information for atlas brain images is introduced when sparse patch-based representation is constructed, and then mutual information is improved by changing the calculation method of the information entropy, and it is used to measure the similarity between the target image and the atlas images. These two make the weights of the atlas more reasonable during fusion. Secondly, in order to fuse the segmentation results from two methods, nonlocal-patch-weighted method and the sparse representation method, a new similarity index based on a combination of dice coefficient and cosine distance is proposed. Finally, the experimental results show that this algorithm proposed in this paper has improved the accuracy of segmentation of hippocampus, striatum, claustrum and other nuclei, and it has better robustness.\",\"PeriodicalId\":442331,\"journal\":{\"name\":\"網際網路技術學刊\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"網際網路技術學刊\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53106/160792642023112406019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023112406019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

猕猴大脑非常接近人类大脑,因此通过研究猕猴大脑结构来加深对人类大脑功能的理解是一种有效的方法。为了更准确地分割猕猴大脑皮层下核,本文设计了一种基于改进稀疏表示的多图谱分割算法。首先,在构建基于稀疏斑块的表示时引入了一种脑图集图像的标记信息,然后通过改变信息熵的计算方法改进了互信息,并用它来衡量目标图像和图集图像之间的相似性。这两点使得融合过程中图集的权重更加合理。其次,为了融合非局部补丁加权法和稀疏表示法两种方法的分割结果,提出了一种基于骰子系数和余弦距离组合的新的相似性指标。最后,实验结果表明,本文提出的算法提高了海马、纹状体、视网膜和其他核团的分割精度,并具有更好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Multi-Atlas Segmentation Algorithm with An Improved Sparse Representation on Brain MR Images
Macaque brains are very close to human brains, so it’s an effective way to deepen the understanding of human brain functions by studying macaque brain structures. In order to segment subcortical nuclei of macaque brains more accurately, a multi-atlas segmentation algorithm based on an improved sparse representation has been designed in this paper. Firstly, a type of labeling information for atlas brain images is introduced when sparse patch-based representation is constructed, and then mutual information is improved by changing the calculation method of the information entropy, and it is used to measure the similarity between the target image and the atlas images. These two make the weights of the atlas more reasonable during fusion. Secondly, in order to fuse the segmentation results from two methods, nonlocal-patch-weighted method and the sparse representation method, a new similarity index based on a combination of dice coefficient and cosine distance is proposed. Finally, the experimental results show that this algorithm proposed in this paper has improved the accuracy of segmentation of hippocampus, striatum, claustrum and other nuclei, and it has better robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1