Jie Zhou, Shenpo Dong, Yunxin Huang, Meihan Wu, Haili Li, Jingnan Wang, Hongkui Tu, Xiaodong Wang
{"title":"U-CORE:用于开放关系提取的统一深度聚类对比框架","authors":"Jie Zhou, Shenpo Dong, Yunxin Huang, Meihan Wu, Haili Li, Jingnan Wang, Hongkui Tu, Xiaodong Wang","doi":"10.1162/tacl_a_00604","DOIUrl":null,"url":null,"abstract":"Abstract Within Open Relation Extraction (ORE) tasks, the Zero-shot ORE method is to generalize undefined relations from predefined relations, while the Unsupervised ORE method is to extract undefined relations without the need for annotations. However, despite the possibility of overlap between predefined and undefined relations in the training data, a unified framework for both Zero-shot and Unsupervised ORE has yet to be established. To address this gap, we propose U-CORE: A Unified Deep Cluster-wise Contrastive Framework for both Zero-shot and Unsupervised ORE, by leveraging techniques from Contrastive Learning (CL) and Clustering.1 U-CORE overcomes the limitations of CL-based Zero-shot ORE methods by employing Cluster-wise CL that preserves both local smoothness as well as global semantics. Additionally, we employ a deep-cluster-based updater that optimizes the cluster center, thus enhancing the accuracy and efficiency of the model. To increase the stability of the model, we adopt Adaptive Self-paced Learning that effectively addresses the data-shifting problems. Experimental results on three well-known datasets demonstrate that U-CORE significantly improves upon existing methods by showing an average improvement of 7.35% ARI on Zero-shot ORE tasks and 15.24% ARI on Unsupervised ORE tasks.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"5 1","pages":"1301-1315"},"PeriodicalIF":4.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"U-CORE: A Unified Deep Cluster-wise Contrastive Framework for Open Relation Extraction\",\"authors\":\"Jie Zhou, Shenpo Dong, Yunxin Huang, Meihan Wu, Haili Li, Jingnan Wang, Hongkui Tu, Xiaodong Wang\",\"doi\":\"10.1162/tacl_a_00604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Within Open Relation Extraction (ORE) tasks, the Zero-shot ORE method is to generalize undefined relations from predefined relations, while the Unsupervised ORE method is to extract undefined relations without the need for annotations. However, despite the possibility of overlap between predefined and undefined relations in the training data, a unified framework for both Zero-shot and Unsupervised ORE has yet to be established. To address this gap, we propose U-CORE: A Unified Deep Cluster-wise Contrastive Framework for both Zero-shot and Unsupervised ORE, by leveraging techniques from Contrastive Learning (CL) and Clustering.1 U-CORE overcomes the limitations of CL-based Zero-shot ORE methods by employing Cluster-wise CL that preserves both local smoothness as well as global semantics. Additionally, we employ a deep-cluster-based updater that optimizes the cluster center, thus enhancing the accuracy and efficiency of the model. To increase the stability of the model, we adopt Adaptive Self-paced Learning that effectively addresses the data-shifting problems. Experimental results on three well-known datasets demonstrate that U-CORE significantly improves upon existing methods by showing an average improvement of 7.35% ARI on Zero-shot ORE tasks and 15.24% ARI on Unsupervised ORE tasks.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"5 1\",\"pages\":\"1301-1315\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00604\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00604","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
U-CORE: A Unified Deep Cluster-wise Contrastive Framework for Open Relation Extraction
Abstract Within Open Relation Extraction (ORE) tasks, the Zero-shot ORE method is to generalize undefined relations from predefined relations, while the Unsupervised ORE method is to extract undefined relations without the need for annotations. However, despite the possibility of overlap between predefined and undefined relations in the training data, a unified framework for both Zero-shot and Unsupervised ORE has yet to be established. To address this gap, we propose U-CORE: A Unified Deep Cluster-wise Contrastive Framework for both Zero-shot and Unsupervised ORE, by leveraging techniques from Contrastive Learning (CL) and Clustering.1 U-CORE overcomes the limitations of CL-based Zero-shot ORE methods by employing Cluster-wise CL that preserves both local smoothness as well as global semantics. Additionally, we employ a deep-cluster-based updater that optimizes the cluster center, thus enhancing the accuracy and efficiency of the model. To increase the stability of the model, we adopt Adaptive Self-paced Learning that effectively addresses the data-shifting problems. Experimental results on three well-known datasets demonstrate that U-CORE significantly improves upon existing methods by showing an average improvement of 7.35% ARI on Zero-shot ORE tasks and 15.24% ARI on Unsupervised ORE tasks.
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.