通过帕夫拉克粗略近似法在信息系统中进行决策

Mahmoud nasef
{"title":"通过帕夫拉克粗略近似法在信息系统中进行决策","authors":"Mahmoud nasef","doi":"10.21608/kjis.2023.250400.1017","DOIUrl":null,"url":null,"abstract":"The original rough set model was based on a special kind of topological structure whose partition resulted from an equivalence relation. We have shown that real-world problems can be dealt with using the modern topological structure induced by Pawlak’s rough approximation. In this research, actual information was collected for some patients in hospitals, health centers, isolation centers and some symptoms were recorded through “ the World Health Organization” website enabled us analyze their data. By establishing an information system in which data can be analyzed using rough topology in order to draw conclusion about the most important symptoms in disease conPirmation.","PeriodicalId":115907,"journal":{"name":"Kafrelsheikh Journal of Information Sciences","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decision Making in an Information System Via Pawlak’s Rough Approximation\",\"authors\":\"Mahmoud nasef\",\"doi\":\"10.21608/kjis.2023.250400.1017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The original rough set model was based on a special kind of topological structure whose partition resulted from an equivalence relation. We have shown that real-world problems can be dealt with using the modern topological structure induced by Pawlak’s rough approximation. In this research, actual information was collected for some patients in hospitals, health centers, isolation centers and some symptoms were recorded through “ the World Health Organization” website enabled us analyze their data. By establishing an information system in which data can be analyzed using rough topology in order to draw conclusion about the most important symptoms in disease conPirmation.\",\"PeriodicalId\":115907,\"journal\":{\"name\":\"Kafrelsheikh Journal of Information Sciences\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kafrelsheikh Journal of Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/kjis.2023.250400.1017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kafrelsheikh Journal of Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/kjis.2023.250400.1017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最初的粗糙集模型基于一种特殊的拓扑结构,其分区由等价关系产生。我们已经证明,使用帕夫拉克粗糙近似所诱导的现代拓扑结构可以处理现实世界中的问题。在这项研究中,我们在医院、保健中心和隔离中心收集了一些病人的实际信息,并通过 "世界卫生组织 "网站记录了一些症状,从而分析了他们的数据。通过建立一个信息系统,利用粗糙拓扑对数据进行分析,从而得出疾病确认中最重要症状的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision Making in an Information System Via Pawlak’s Rough Approximation
The original rough set model was based on a special kind of topological structure whose partition resulted from an equivalence relation. We have shown that real-world problems can be dealt with using the modern topological structure induced by Pawlak’s rough approximation. In this research, actual information was collected for some patients in hospitals, health centers, isolation centers and some symptoms were recorded through “ the World Health Organization” website enabled us analyze their data. By establishing an information system in which data can be analyzed using rough topology in order to draw conclusion about the most important symptoms in disease conPirmation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Anemia Diagnosis And Prediction Based On Machine Learning Chronic Kidney Disease Classification Using ML Algorithms Cost-Efficient Method for Detecting and Mitigating DDOS Attacks in SDN Based Networks Decision Making in an Information System Via Pawlak’s Rough Approximation The classification of mushroom using ML
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1