基于 HSI-UAV 的荒漠化草原退化指示草种的识别与分类

IF 0.8 4区 化学 Q4 SPECTROSCOPY Spectroscopy Pub Date : 2023-11-01 DOI:10.56530/spectroscopy.dr5881c1
Xinchao Gao, Fei Hao, W. Pi, Xiangbing Zhu, Tao Zhang, Yuge Bi, Yanbin Zhang
{"title":"基于 HSI-UAV 的荒漠化草原退化指示草种的识别与分类","authors":"Xinchao Gao, Fei Hao, W. Pi, Xiangbing Zhu, Tao Zhang, Yuge Bi, Yanbin Zhang","doi":"10.56530/spectroscopy.dr5881c1","DOIUrl":null,"url":null,"abstract":"The emergence and number of grassland degradation-indicator grass species are important in evaluating the extent of grassland degradation. Plant populations in desertified steppe are distributed randomly and at low density. Specifically, degradation-indicator grass species mainly exist as individuals, making spectrum-based identification difficult. Here, a low-altitude unmanned aerial vehicle (UAV) hyperspectral remote-sensing system was constructed to identify the typical degradation-indicator grass species of a desertified steppe in China. The ASI index (Artemisia frigida Willd. and Stipa breviflora Grisb. index) and classification rules were proposed and applied. We implemented a comprehensive application of amplified differences in spectral characteristics between vegetation communities and assigned plant senescence reflectance-index bands, using the characteristics of the plant populations under observation and UAV hyperspectral remote-sensing data, to solve the problems resulting from high similarity while identifying ground objects. Our results lay a solid foundation for monitoring and evaluating desertified steppe degradation-indicator grass species based on remote sensing.","PeriodicalId":21957,"journal":{"name":"Spectroscopy","volume":"191 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Classification of Degradation-Indicator Grass Species in a Desertified Steppe Based on HSI-UAV\",\"authors\":\"Xinchao Gao, Fei Hao, W. Pi, Xiangbing Zhu, Tao Zhang, Yuge Bi, Yanbin Zhang\",\"doi\":\"10.56530/spectroscopy.dr5881c1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence and number of grassland degradation-indicator grass species are important in evaluating the extent of grassland degradation. Plant populations in desertified steppe are distributed randomly and at low density. Specifically, degradation-indicator grass species mainly exist as individuals, making spectrum-based identification difficult. Here, a low-altitude unmanned aerial vehicle (UAV) hyperspectral remote-sensing system was constructed to identify the typical degradation-indicator grass species of a desertified steppe in China. The ASI index (Artemisia frigida Willd. and Stipa breviflora Grisb. index) and classification rules were proposed and applied. We implemented a comprehensive application of amplified differences in spectral characteristics between vegetation communities and assigned plant senescence reflectance-index bands, using the characteristics of the plant populations under observation and UAV hyperspectral remote-sensing data, to solve the problems resulting from high similarity while identifying ground objects. Our results lay a solid foundation for monitoring and evaluating desertified steppe degradation-indicator grass species based on remote sensing.\",\"PeriodicalId\":21957,\"journal\":{\"name\":\"Spectroscopy\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.56530/spectroscopy.dr5881c1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SPECTROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.56530/spectroscopy.dr5881c1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

草原退化指示草种的出现和数量对于评估草原退化程度非常重要。荒漠化草原上的植物种群随机分布,密度较低。具体而言,退化指示草种主要以个体形式存在,因此难以进行光谱识别。本文构建了一个低空无人飞行器(UAV)高光谱遥感系统,以识别中国荒漠化草原上典型的退化指示草种。提出并应用了ASI指数(Artemisia frigida Willd.和Stipa breviflora Grisb.指数)和分类规则。我们综合应用了植被群落间光谱特征的放大差异,利用观测到的植物种群特征和无人机高光谱遥感数据,分配了植物衰老反射率指数波段,解决了在识别地面目标时因相似度高而产生的问题。我们的研究成果为基于遥感技术监测和评估荒漠化草原退化指示草种奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification and Classification of Degradation-Indicator Grass Species in a Desertified Steppe Based on HSI-UAV
The emergence and number of grassland degradation-indicator grass species are important in evaluating the extent of grassland degradation. Plant populations in desertified steppe are distributed randomly and at low density. Specifically, degradation-indicator grass species mainly exist as individuals, making spectrum-based identification difficult. Here, a low-altitude unmanned aerial vehicle (UAV) hyperspectral remote-sensing system was constructed to identify the typical degradation-indicator grass species of a desertified steppe in China. The ASI index (Artemisia frigida Willd. and Stipa breviflora Grisb. index) and classification rules were proposed and applied. We implemented a comprehensive application of amplified differences in spectral characteristics between vegetation communities and assigned plant senescence reflectance-index bands, using the characteristics of the plant populations under observation and UAV hyperspectral remote-sensing data, to solve the problems resulting from high similarity while identifying ground objects. Our results lay a solid foundation for monitoring and evaluating desertified steppe degradation-indicator grass species based on remote sensing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spectroscopy
Spectroscopy 物理-光谱学
CiteScore
1.10
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: Spectroscopy welcomes manuscripts that describe techniques and applications of all forms of spectroscopy and that are of immediate interest to users in industry, academia, and government.
期刊最新文献
Hyperspectral Imaging Combined with Convolutional Neural Network for Rapid and Accurate Evaluation of Tilapia Fillet Freshness Simple Spectrometer System, Simple Validation? High-Resolution High-Speed LIBS Microscopy Inorganics I: Introduction Raman Spectra Used to Understand the Origins of Banding in Spherulites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1