使用最小特征集和基于自动分割的窗口优化来诊断和预测心律失常状况的机器学习方法

Swetha Rameshbabu, Sabitha Ramakrishnan
{"title":"使用最小特征集和基于自动分割的窗口优化来诊断和预测心律失常状况的机器学习方法","authors":"Swetha Rameshbabu, Sabitha Ramakrishnan","doi":"10.5755/j02.eie.34357","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases have become extremely prevalent in the global population. Several accurate classification methods for arrhythmias have been proposed in the healthcare literature. However, extensive research is required to improve the prediction accuracy of various arrhythmia conditions. In this paper, discussion is focussed on two major objectives: optimisation of windows based on our proposed auto-segmentation method for the exact diagnosis of the heart condition within the segment and prediction of arrhythmia progression. For prediction, identification of features is vital. Identified efficient independent feature sets such as RR interval, peak-to-peak amplitude, and unique derived parameters such as coefficient of variation (CV) of RR interval and CV of peak-to-peak amplitude. The progression of arrhythmia includes the following steps such as data preprocessing, time and frequency domain feature extraction, and feature selection using principal component analysis. A hypertuned support vector machine is utilised for accurate diagnosis. Proposed two techniques to predict the progression of arrhythmias: the regression-based trend curve (RBTC) and the fuzzy enhanced Markov model (FEMM). We have effectively evaluated our prediction algorithms using offline Massachusetts Institute of Technology Physio Net database signals, using automatic segmentation with prediction accuracy of 98 %. In terms of accuracy, FEMM outperforms RBTC. Thus, an auto-segmentation algorithm was proposed to classify various arrhythmia signals using a minimal feature set and to predict future conditions using our proposed method, FEMM.","PeriodicalId":507694,"journal":{"name":"Elektronika ir Elektrotechnika","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Approach for Diagnosis and Prognosis of Cardiac Arrhythmia Condition Using a Minimum Feature Set and Auto-Segmentation-Based Window Optimisation\",\"authors\":\"Swetha Rameshbabu, Sabitha Ramakrishnan\",\"doi\":\"10.5755/j02.eie.34357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases have become extremely prevalent in the global population. Several accurate classification methods for arrhythmias have been proposed in the healthcare literature. However, extensive research is required to improve the prediction accuracy of various arrhythmia conditions. In this paper, discussion is focussed on two major objectives: optimisation of windows based on our proposed auto-segmentation method for the exact diagnosis of the heart condition within the segment and prediction of arrhythmia progression. For prediction, identification of features is vital. Identified efficient independent feature sets such as RR interval, peak-to-peak amplitude, and unique derived parameters such as coefficient of variation (CV) of RR interval and CV of peak-to-peak amplitude. The progression of arrhythmia includes the following steps such as data preprocessing, time and frequency domain feature extraction, and feature selection using principal component analysis. A hypertuned support vector machine is utilised for accurate diagnosis. Proposed two techniques to predict the progression of arrhythmias: the regression-based trend curve (RBTC) and the fuzzy enhanced Markov model (FEMM). We have effectively evaluated our prediction algorithms using offline Massachusetts Institute of Technology Physio Net database signals, using automatic segmentation with prediction accuracy of 98 %. In terms of accuracy, FEMM outperforms RBTC. Thus, an auto-segmentation algorithm was proposed to classify various arrhythmia signals using a minimal feature set and to predict future conditions using our proposed method, FEMM.\",\"PeriodicalId\":507694,\"journal\":{\"name\":\"Elektronika ir Elektrotechnika\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elektronika ir Elektrotechnika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.eie.34357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektronika ir Elektrotechnika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.eie.34357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病在全球人口中极为普遍。医疗文献中提出了几种精确的心律失常分类方法。然而,要提高各种心律失常情况的预测准确性,还需要进行广泛的研究。本文将重点讨论两个主要目标:根据我们提出的自动分段方法优化窗口,以准确诊断分段内的心脏状况,以及预测心律失常的进展。要进行预测,识别特征至关重要。我们确定了有效的独立特征集,如 RR 间期、峰-峰振幅,以及独特的衍生参数,如 RR 间期变异系数 (CV) 和峰-峰振幅变异系数 (CV)。心律失常的进展包括以下步骤,如数据预处理、时域和频域特征提取,以及使用主成分分析进行特征选择。利用超调支持向量机进行精确诊断。提出了两种预测心律失常进展的技术:基于回归的趋势曲线(RBTC)和模糊增强马尔可夫模型(FEMM)。我们使用离线的麻省理工学院 Physio Net 数据库信号对我们的预测算法进行了有效评估,使用自动分割,预测准确率达到 98%。就准确率而言,FEMM 优于 RBTC。因此,我们提出了一种自动分割算法,使用最小特征集对各种心律失常信号进行分类,并使用我们提出的方法 FEMM 预测未来的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approach for Diagnosis and Prognosis of Cardiac Arrhythmia Condition Using a Minimum Feature Set and Auto-Segmentation-Based Window Optimisation
Cardiovascular diseases have become extremely prevalent in the global population. Several accurate classification methods for arrhythmias have been proposed in the healthcare literature. However, extensive research is required to improve the prediction accuracy of various arrhythmia conditions. In this paper, discussion is focussed on two major objectives: optimisation of windows based on our proposed auto-segmentation method for the exact diagnosis of the heart condition within the segment and prediction of arrhythmia progression. For prediction, identification of features is vital. Identified efficient independent feature sets such as RR interval, peak-to-peak amplitude, and unique derived parameters such as coefficient of variation (CV) of RR interval and CV of peak-to-peak amplitude. The progression of arrhythmia includes the following steps such as data preprocessing, time and frequency domain feature extraction, and feature selection using principal component analysis. A hypertuned support vector machine is utilised for accurate diagnosis. Proposed two techniques to predict the progression of arrhythmias: the regression-based trend curve (RBTC) and the fuzzy enhanced Markov model (FEMM). We have effectively evaluated our prediction algorithms using offline Massachusetts Institute of Technology Physio Net database signals, using automatic segmentation with prediction accuracy of 98 %. In terms of accuracy, FEMM outperforms RBTC. Thus, an auto-segmentation algorithm was proposed to classify various arrhythmia signals using a minimal feature set and to predict future conditions using our proposed method, FEMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sparse Point Cloud Registration Network with Semantic Supervision in Wilderness Scenes Performance Analysis of PSO-Based SHEPWM Control of Clone Output Nine-Switch Inverter for Nonlinear Loads Spider Monkey Metaheuristic Tuning of Model Predictive Control with Perched Landing Stabilities for Novel Auxetic Landing Foot in Drones Evaluating the Efficacy of Real-Time Connected Vehicle Basic Safety Messages in Mitigating Aberrant Driving Behaviour and Risk of Vehicle Crashes: Preliminary Insights from Highway Scenarios Development of a Position Control System for Wheeled Humanoid Robot Movement Using the Swerve Drive Method Based on Fuzzy Logic Type-2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1