R. Ruswanto, Nisa Uswatun Khasanah, Gatut Ari Wardani, R. Mardianingrum
{"title":"作为抗癌候选物质的双-(1-(3-氯苯甲酰基)-3-苯基硫脲)钴 (III) 的合成与计算研究","authors":"R. Ruswanto, Nisa Uswatun Khasanah, Gatut Ari Wardani, R. Mardianingrum","doi":"10.14710/jksa.26.7.238-248","DOIUrl":null,"url":null,"abstract":"Cancer is a disease characterized by cells forming abnormally so that a buildup can cause lumps. Drug compounds used for anticancer treatment by chemotherapy become a severe problem because they have dangerous side effects and can affect patient’s quality of life. This study aims to discover new drug compounds with lowered toxicity effects. This was achieved by modifying their structures through synthesis, characterization, and estimating the interactions of the synthesized compounds with specific target receptors, utilizing a docking method. The result obtained was a synthesis yield of 36.2%. The characterization of complex compounds was characterized by the presence of a maximum wavelength of 273 nm and a molecular weight of 652 g/mmol, indicating the absorption of Co-O and Co-S at respective wavenumbers of 498 cm-1 and 604 cm- 1. The docking results showed that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex had the best activity on human estrogen receptor alpha (hER alpha) with a binding affinity value of - 9.40 kcal/mol and an inhibition constant of 0.129 M, which was lower than the comparison compound (cisplatin) and had a better pharmacokinetic profile than cisplatin. This study shows that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex is predicted to have potential as an anticancer candidate.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Computational Study of Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) as Anticancer Candidate\",\"authors\":\"R. Ruswanto, Nisa Uswatun Khasanah, Gatut Ari Wardani, R. Mardianingrum\",\"doi\":\"10.14710/jksa.26.7.238-248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is a disease characterized by cells forming abnormally so that a buildup can cause lumps. Drug compounds used for anticancer treatment by chemotherapy become a severe problem because they have dangerous side effects and can affect patient’s quality of life. This study aims to discover new drug compounds with lowered toxicity effects. This was achieved by modifying their structures through synthesis, characterization, and estimating the interactions of the synthesized compounds with specific target receptors, utilizing a docking method. The result obtained was a synthesis yield of 36.2%. The characterization of complex compounds was characterized by the presence of a maximum wavelength of 273 nm and a molecular weight of 652 g/mmol, indicating the absorption of Co-O and Co-S at respective wavenumbers of 498 cm-1 and 604 cm- 1. The docking results showed that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex had the best activity on human estrogen receptor alpha (hER alpha) with a binding affinity value of - 9.40 kcal/mol and an inhibition constant of 0.129 M, which was lower than the comparison compound (cisplatin) and had a better pharmacokinetic profile than cisplatin. This study shows that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex is predicted to have potential as an anticancer candidate.\",\"PeriodicalId\":17811,\"journal\":{\"name\":\"Jurnal Kimia Sains dan Aplikasi\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Sains dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jksa.26.7.238-248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.26.7.238-248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis and Computational Study of Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) as Anticancer Candidate
Cancer is a disease characterized by cells forming abnormally so that a buildup can cause lumps. Drug compounds used for anticancer treatment by chemotherapy become a severe problem because they have dangerous side effects and can affect patient’s quality of life. This study aims to discover new drug compounds with lowered toxicity effects. This was achieved by modifying their structures through synthesis, characterization, and estimating the interactions of the synthesized compounds with specific target receptors, utilizing a docking method. The result obtained was a synthesis yield of 36.2%. The characterization of complex compounds was characterized by the presence of a maximum wavelength of 273 nm and a molecular weight of 652 g/mmol, indicating the absorption of Co-O and Co-S at respective wavenumbers of 498 cm-1 and 604 cm- 1. The docking results showed that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex had the best activity on human estrogen receptor alpha (hER alpha) with a binding affinity value of - 9.40 kcal/mol and an inhibition constant of 0.129 M, which was lower than the comparison compound (cisplatin) and had a better pharmacokinetic profile than cisplatin. This study shows that the Bis-(1-(3-Chlorobenzoyl)-3-Phenylthiourea) Cobalt (III) complex is predicted to have potential as an anticancer candidate.