{"title":"4-DOF 平行驱动机构的闭式动态建模和性能评估","authors":"Yangyang Huang, Jinzhu Zhang, Xiaoyan Xiong","doi":"10.1115/1.4063670","DOIUrl":null,"url":null,"abstract":"Kinematic estimations and dynamic performance assessments are fundamental theoretical issues to realize the mechanism from conceptual design to engineering application. In this paper, the closed-form dynamic formulations of a 4-DOF parallel driving mechanism are derived by combining the Lagrange method and virtual work principle. The selection principle of generalized coordinates and the steps for inverse dynamics modeling of the manipulator are proposed. Simulation results verify the correctness of the dynamic model and a physical prototype has been built. Based on the dynamic modeling, the concise algebraic expression of the operational space inertia matrix of the parallel driving mechanism is deduced. Because the translation and rotation degrees of freedom are inconsistent in the operational space, the Jacobian matrix is adopted to map the inertia matrix from the operational space to the joint space. Based on the inertia matrix in joint space, the Average Energy Transfer Efficiency (AETE) index is proposed. Finally, two control techniques for the manipulator implementable in joint space are compared. The AETE index and dynamic modeling method suggested in this paper can be further used in other manipulators for dynamic analysis and motion system design.","PeriodicalId":508172,"journal":{"name":"Journal of Mechanisms and Robotics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-form dynamic modeling and performance evaluation of a 4-DOF parallel driving mechanism\",\"authors\":\"Yangyang Huang, Jinzhu Zhang, Xiaoyan Xiong\",\"doi\":\"10.1115/1.4063670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinematic estimations and dynamic performance assessments are fundamental theoretical issues to realize the mechanism from conceptual design to engineering application. In this paper, the closed-form dynamic formulations of a 4-DOF parallel driving mechanism are derived by combining the Lagrange method and virtual work principle. The selection principle of generalized coordinates and the steps for inverse dynamics modeling of the manipulator are proposed. Simulation results verify the correctness of the dynamic model and a physical prototype has been built. Based on the dynamic modeling, the concise algebraic expression of the operational space inertia matrix of the parallel driving mechanism is deduced. Because the translation and rotation degrees of freedom are inconsistent in the operational space, the Jacobian matrix is adopted to map the inertia matrix from the operational space to the joint space. Based on the inertia matrix in joint space, the Average Energy Transfer Efficiency (AETE) index is proposed. Finally, two control techniques for the manipulator implementable in joint space are compared. The AETE index and dynamic modeling method suggested in this paper can be further used in other manipulators for dynamic analysis and motion system design.\",\"PeriodicalId\":508172,\"journal\":{\"name\":\"Journal of Mechanisms and Robotics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanisms and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4063670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanisms and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-form dynamic modeling and performance evaluation of a 4-DOF parallel driving mechanism
Kinematic estimations and dynamic performance assessments are fundamental theoretical issues to realize the mechanism from conceptual design to engineering application. In this paper, the closed-form dynamic formulations of a 4-DOF parallel driving mechanism are derived by combining the Lagrange method and virtual work principle. The selection principle of generalized coordinates and the steps for inverse dynamics modeling of the manipulator are proposed. Simulation results verify the correctness of the dynamic model and a physical prototype has been built. Based on the dynamic modeling, the concise algebraic expression of the operational space inertia matrix of the parallel driving mechanism is deduced. Because the translation and rotation degrees of freedom are inconsistent in the operational space, the Jacobian matrix is adopted to map the inertia matrix from the operational space to the joint space. Based on the inertia matrix in joint space, the Average Energy Transfer Efficiency (AETE) index is proposed. Finally, two control techniques for the manipulator implementable in joint space are compared. The AETE index and dynamic modeling method suggested in this paper can be further used in other manipulators for dynamic analysis and motion system design.