DELFormer:用于道路分段的细节增强型轻质变压器

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2023-10-01 DOI:10.1117/1.JRS.17.046507
Mingrui Xin, Yibin Fu, Weiming Li, Haoxuan Ma, Hongyang Bai
{"title":"DELFormer:用于道路分段的细节增强型轻质变压器","authors":"Mingrui Xin, Yibin Fu, Weiming Li, Haoxuan Ma, Hongyang Bai","doi":"10.1117/1.JRS.17.046507","DOIUrl":null,"url":null,"abstract":"Abstract. The road segmentation task has become increasingly important in fields such as urban planning, traffic management, and environmental monitoring. However, most existing deep learning-based methods suffer from issues such as poor temporal effectiveness and connectivity, making it a significant challenge to achieve high-precision and high-efficiency road segmentation. We propose a road segmentation model based on a detail-enhanced lightweight transformer. Through the connectivity enhancement module, the issue of spatial information loss is addressed, enhancing the modeling capability of the road network connectivity. The model incorporates a detail-enhancement strategy to capture the relationship between roads and the environment, enhancing the perception and expression of details while maintaining low computational complexity. Furthermore, the use of a lightweight multiple feature fusion module promotes information fusion from features at different scales while a maintaining lightweight design. Extensive experiments on two publicly available datasets demonstrate that our method achieves the best performance in terms of real-time effectiveness and accuracy.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"116 1","pages":"046507 - 046507"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DELFormer: detail-enhanced lightweight transformer for road segmentation\",\"authors\":\"Mingrui Xin, Yibin Fu, Weiming Li, Haoxuan Ma, Hongyang Bai\",\"doi\":\"10.1117/1.JRS.17.046507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The road segmentation task has become increasingly important in fields such as urban planning, traffic management, and environmental monitoring. However, most existing deep learning-based methods suffer from issues such as poor temporal effectiveness and connectivity, making it a significant challenge to achieve high-precision and high-efficiency road segmentation. We propose a road segmentation model based on a detail-enhanced lightweight transformer. Through the connectivity enhancement module, the issue of spatial information loss is addressed, enhancing the modeling capability of the road network connectivity. The model incorporates a detail-enhancement strategy to capture the relationship between roads and the environment, enhancing the perception and expression of details while maintaining low computational complexity. Furthermore, the use of a lightweight multiple feature fusion module promotes information fusion from features at different scales while a maintaining lightweight design. Extensive experiments on two publicly available datasets demonstrate that our method achieves the best performance in terms of real-time effectiveness and accuracy.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"116 1\",\"pages\":\"046507 - 046507\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JRS.17.046507\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JRS.17.046507","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要道路分割任务在城市规划、交通管理和环境监测等领域变得越来越重要。然而,现有的基于深度学习的方法大多存在时间有效性和连接性差等问题,因此实现高精度、高效率的道路分割是一项重大挑战。我们提出了一种基于细节增强轻量级变换器的道路分割模型。通过连通性增强模块,解决了空间信息丢失的问题,增强了路网连通性的建模能力。该模型采用细节增强策略来捕捉道路与环境之间的关系,在保持较低计算复杂度的同时增强了细节的感知和表达。此外,轻量级多特征融合模块的使用促进了不同尺度特征的信息融合,同时保持了轻量级设计。在两个公开数据集上进行的广泛实验表明,我们的方法在实时有效性和准确性方面都达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DELFormer: detail-enhanced lightweight transformer for road segmentation
Abstract. The road segmentation task has become increasingly important in fields such as urban planning, traffic management, and environmental monitoring. However, most existing deep learning-based methods suffer from issues such as poor temporal effectiveness and connectivity, making it a significant challenge to achieve high-precision and high-efficiency road segmentation. We propose a road segmentation model based on a detail-enhanced lightweight transformer. Through the connectivity enhancement module, the issue of spatial information loss is addressed, enhancing the modeling capability of the road network connectivity. The model incorporates a detail-enhancement strategy to capture the relationship between roads and the environment, enhancing the perception and expression of details while maintaining low computational complexity. Furthermore, the use of a lightweight multiple feature fusion module promotes information fusion from features at different scales while a maintaining lightweight design. Extensive experiments on two publicly available datasets demonstrate that our method achieves the best performance in terms of real-time effectiveness and accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1