{"title":"大型火成岩带如何杀死地球上的大多数生命--无数次","authors":"S. Grasby, D. P. Bond","doi":"10.2138/gselements.19.5.276","DOIUrl":null,"url":null,"abstract":"Evolution has not been a simple path. Since the first appearance of complex life, there have been several mass extinctions on Earth. This was exemplified by the most severe event during the Phanerozoic, the end-Permian mass extinction that occurred 252 million years ago and saw a loss of 90% and 70% of all marine and terrestrial species, respectively. Such mass extinctions have entirely reset ecosystems. Increasing evidence points to the massive eruption and crustal emplacement of magmas associated with large igneous provinces (LIPs) as key drivers of these events. Understanding how LIP events disrupted global biogeochemical cycles is of prime importance, especially as humans alter the atmosphere and biosphere today. We explore the cascading impacts of LIP events on global climate, oceans, and land—including runaway greenhouses, the release of toxic metals to the environment, the destruction of the ozone layer, and how global oceans are driven to anoxic and acidic states—all of which have parallels in the consequences of modern industrialisation.","PeriodicalId":11643,"journal":{"name":"Elements","volume":"330 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times\",\"authors\":\"S. Grasby, D. P. Bond\",\"doi\":\"10.2138/gselements.19.5.276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolution has not been a simple path. Since the first appearance of complex life, there have been several mass extinctions on Earth. This was exemplified by the most severe event during the Phanerozoic, the end-Permian mass extinction that occurred 252 million years ago and saw a loss of 90% and 70% of all marine and terrestrial species, respectively. Such mass extinctions have entirely reset ecosystems. Increasing evidence points to the massive eruption and crustal emplacement of magmas associated with large igneous provinces (LIPs) as key drivers of these events. Understanding how LIP events disrupted global biogeochemical cycles is of prime importance, especially as humans alter the atmosphere and biosphere today. We explore the cascading impacts of LIP events on global climate, oceans, and land—including runaway greenhouses, the release of toxic metals to the environment, the destruction of the ozone layer, and how global oceans are driven to anoxic and acidic states—all of which have parallels in the consequences of modern industrialisation.\",\"PeriodicalId\":11643,\"journal\":{\"name\":\"Elements\",\"volume\":\"330 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elements\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2138/gselements.19.5.276\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elements","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2138/gselements.19.5.276","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
How Large Igneous Provinces Have Killed Most Life on Earth—Numerous Times
Evolution has not been a simple path. Since the first appearance of complex life, there have been several mass extinctions on Earth. This was exemplified by the most severe event during the Phanerozoic, the end-Permian mass extinction that occurred 252 million years ago and saw a loss of 90% and 70% of all marine and terrestrial species, respectively. Such mass extinctions have entirely reset ecosystems. Increasing evidence points to the massive eruption and crustal emplacement of magmas associated with large igneous provinces (LIPs) as key drivers of these events. Understanding how LIP events disrupted global biogeochemical cycles is of prime importance, especially as humans alter the atmosphere and biosphere today. We explore the cascading impacts of LIP events on global climate, oceans, and land—including runaway greenhouses, the release of toxic metals to the environment, the destruction of the ozone layer, and how global oceans are driven to anoxic and acidic states—all of which have parallels in the consequences of modern industrialisation.
期刊介绍:
Elements is an international magazine of mineralogy, petrology, and geochemistry.
Published bimonthly, every issue explores a theme of broad and current interest. Elements publishes invited peer-reviewed articles for each thematic collection of papers. Topics of interest can be proposed to the editors who will review every proposal submitted.
Elements also presents regular features including a opinion articles, calendar of events, short course announcements, awards, conference reports, policy news, as well as news of the 18 participating societies.