{"title":"催化剂:优化大型内存键值系统的缓存管理","authors":"Kefei Wang, Feng Chen","doi":"10.14778/3625054.3625068","DOIUrl":null,"url":null,"abstract":"In-memory key-value cache systems, such as Memcached and Redis, are essential in today's data centers. A key mission of such cache systems is to identify the most valuable data for caching. To achieve this, the current system design keeps track of each key-value item's access and attempts to make accurate estimation on its temporal locality. All it aims is to achieve the highest cache hit ratio. However, as cache capacity quickly increases, the overhead of managing metadata for a massive amount of small key-value items rises to an unbearable level. Put it simply, the current fine-grained, heavy-cost approach cannot continue to scale. In this paper, we have performed an experimental study on the scalability challenge of the current key-value cache system design and quantitatively analyzed the inherent issues related to the metadata operations for cache management. We further propose a key-value cache management scheme, called Catalyst , based on a highly efficient metadata structure, which allows us to make effective caching decisions in a scalable way. By offloading non-essential metadata operations to GPU, we can further dedicate the limited CPU and memory resources to the main service operations for improved throughput and latency. We have developed a prototype based on Memcached. Our experimental results show that our scheme can significantly enhance the scalability and improve the cache system performance by a factor of up to 4.3.","PeriodicalId":20467,"journal":{"name":"Proc. VLDB Endow.","volume":"54 1","pages":"4339-4352"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalyst: Optimizing Cache Management for Large In-memory Key-value Systems\",\"authors\":\"Kefei Wang, Feng Chen\",\"doi\":\"10.14778/3625054.3625068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-memory key-value cache systems, such as Memcached and Redis, are essential in today's data centers. A key mission of such cache systems is to identify the most valuable data for caching. To achieve this, the current system design keeps track of each key-value item's access and attempts to make accurate estimation on its temporal locality. All it aims is to achieve the highest cache hit ratio. However, as cache capacity quickly increases, the overhead of managing metadata for a massive amount of small key-value items rises to an unbearable level. Put it simply, the current fine-grained, heavy-cost approach cannot continue to scale. In this paper, we have performed an experimental study on the scalability challenge of the current key-value cache system design and quantitatively analyzed the inherent issues related to the metadata operations for cache management. We further propose a key-value cache management scheme, called Catalyst , based on a highly efficient metadata structure, which allows us to make effective caching decisions in a scalable way. By offloading non-essential metadata operations to GPU, we can further dedicate the limited CPU and memory resources to the main service operations for improved throughput and latency. We have developed a prototype based on Memcached. Our experimental results show that our scheme can significantly enhance the scalability and improve the cache system performance by a factor of up to 4.3.\",\"PeriodicalId\":20467,\"journal\":{\"name\":\"Proc. VLDB Endow.\",\"volume\":\"54 1\",\"pages\":\"4339-4352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proc. VLDB Endow.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3625054.3625068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. VLDB Endow.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3625054.3625068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catalyst: Optimizing Cache Management for Large In-memory Key-value Systems
In-memory key-value cache systems, such as Memcached and Redis, are essential in today's data centers. A key mission of such cache systems is to identify the most valuable data for caching. To achieve this, the current system design keeps track of each key-value item's access and attempts to make accurate estimation on its temporal locality. All it aims is to achieve the highest cache hit ratio. However, as cache capacity quickly increases, the overhead of managing metadata for a massive amount of small key-value items rises to an unbearable level. Put it simply, the current fine-grained, heavy-cost approach cannot continue to scale. In this paper, we have performed an experimental study on the scalability challenge of the current key-value cache system design and quantitatively analyzed the inherent issues related to the metadata operations for cache management. We further propose a key-value cache management scheme, called Catalyst , based on a highly efficient metadata structure, which allows us to make effective caching decisions in a scalable way. By offloading non-essential metadata operations to GPU, we can further dedicate the limited CPU and memory resources to the main service operations for improved throughput and latency. We have developed a prototype based on Memcached. Our experimental results show that our scheme can significantly enhance the scalability and improve the cache system performance by a factor of up to 4.3.