白菜乙醇提取物作为磷酸二酯酶 1B 抑制剂的植物化学鉴定和硅学研究

Q3 Pharmacology, Toxicology and Pharmaceutics Journal of HerbMed Pharmacology Pub Date : 2023-08-10 DOI:10.34172/jhp.2023.45004
Nazir Ahmad, Kaisun Nesa Lesa, Navista Sri Octa Ujiantari, Ari Sudarmanto, Z. Ikawati, N. Fakhrudin
{"title":"白菜乙醇提取物作为磷酸二酯酶 1B 抑制剂的植物化学鉴定和硅学研究","authors":"Nazir Ahmad, Kaisun Nesa Lesa, Navista Sri Octa Ujiantari, Ari Sudarmanto, Z. Ikawati, N. Fakhrudin","doi":"10.34172/jhp.2023.45004","DOIUrl":null,"url":null,"abstract":"Introduction: Memory dysfunction has remained a challenging issue globally. Nootropics have proven fruitful in managing cognitive dysfunction but because of their side effects, opportunities exist to explore alternatives. White cabbage is a cost-effective natural source of phytochemicals without side effects and has remained uninvestigated as a nootropic agent. This study sought to identify secondary metabolites in white cabbage extract (WCE) and to predict the molecular interaction between the phytochemical constituents of cabbage and phosphodiesterase-1B (PDE1B) using in silico studies. Methods: The WCE was prepared by macerating crushed fresh white cabbage with ethanol for 24 h with continuous stirring. The phytochemical profile of WCE was analyzed using thin layer chromatography (TLC)-densitometry, and molecular docking studies were performed to predict the underlying mechanism action of the phytochemicals with PDE1B. Results: The TLC-densitometry analysis showed that WCE was a rich source of sinigrin, whereas quercetin, chlorogenic acid, and rutin were not detected. In silico studies identified neobrassicin as having the highest affinity (∆Gbind: −19.3358 kcal/mol) for PDE1B. However, quercetin (∆Gbind: −13.1813 kcal/mol) and chlorogenic acid (∆Gbind: −14.8706 kcal/mol) exhibited moderate interaction with PDE1B. Conclusion: These results suggest that WCE has the potency to improve memory function by blocking PDE1B, and this preliminary study implies upcoming in vitro and in vivo research.","PeriodicalId":15934,"journal":{"name":"Journal of HerbMed Pharmacology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phytochemical identification and in silico study of ethanolic extract of white cabbage as a phosphodiesterase 1B inhibitor\",\"authors\":\"Nazir Ahmad, Kaisun Nesa Lesa, Navista Sri Octa Ujiantari, Ari Sudarmanto, Z. Ikawati, N. Fakhrudin\",\"doi\":\"10.34172/jhp.2023.45004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: Memory dysfunction has remained a challenging issue globally. Nootropics have proven fruitful in managing cognitive dysfunction but because of their side effects, opportunities exist to explore alternatives. White cabbage is a cost-effective natural source of phytochemicals without side effects and has remained uninvestigated as a nootropic agent. This study sought to identify secondary metabolites in white cabbage extract (WCE) and to predict the molecular interaction between the phytochemical constituents of cabbage and phosphodiesterase-1B (PDE1B) using in silico studies. Methods: The WCE was prepared by macerating crushed fresh white cabbage with ethanol for 24 h with continuous stirring. The phytochemical profile of WCE was analyzed using thin layer chromatography (TLC)-densitometry, and molecular docking studies were performed to predict the underlying mechanism action of the phytochemicals with PDE1B. Results: The TLC-densitometry analysis showed that WCE was a rich source of sinigrin, whereas quercetin, chlorogenic acid, and rutin were not detected. In silico studies identified neobrassicin as having the highest affinity (∆Gbind: −19.3358 kcal/mol) for PDE1B. However, quercetin (∆Gbind: −13.1813 kcal/mol) and chlorogenic acid (∆Gbind: −14.8706 kcal/mol) exhibited moderate interaction with PDE1B. Conclusion: These results suggest that WCE has the potency to improve memory function by blocking PDE1B, and this preliminary study implies upcoming in vitro and in vivo research.\",\"PeriodicalId\":15934,\"journal\":{\"name\":\"Journal of HerbMed Pharmacology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of HerbMed Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34172/jhp.2023.45004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of HerbMed Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jhp.2023.45004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

简介在全球范围内,记忆功能障碍仍是一个具有挑战性的问题。事实证明,健脑药物在控制认知功能障碍方面卓有成效,但由于其副作用,人们有机会探索替代品。白甘蓝是一种成本效益高且无副作用的天然植物化学物质来源,但仍未作为一种促智剂进行研究。本研究旨在鉴定白甘蓝提取物(WCE)中的次生代谢物,并利用硅学研究预测白甘蓝的植物化学成分与磷酸二酯酶-1B(PDE1B)之间的分子相互作用。研究方法将粉碎的新鲜白菜用乙醇浸泡 24 小时并持续搅拌,制备 WCE。采用薄层色谱法(TLC)-密度计分析了 WCE 的植物化学成分,并进行了分子对接研究,以预测植物化学成分与 PDE1B 的作用机制。结果TLC-密度测定分析表明,WCE含有丰富的山奈苷,而槲皮素、绿原酸和芦丁未被检测到。硅学研究发现,新巴西苷与 PDE1B 的亲和力最高(∆Gbind:-19.3358 kcal/mol)。然而,槲皮素(ΔGbind:-13.1813 kcal/mol)和绿原酸(ΔGbind:-14.8706 kcal/mol)与 PDE1B 的相互作用程度适中。结论这些结果表明,WCE 具有通过阻断 PDE1B 来改善记忆功能的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phytochemical identification and in silico study of ethanolic extract of white cabbage as a phosphodiesterase 1B inhibitor
Introduction: Memory dysfunction has remained a challenging issue globally. Nootropics have proven fruitful in managing cognitive dysfunction but because of their side effects, opportunities exist to explore alternatives. White cabbage is a cost-effective natural source of phytochemicals without side effects and has remained uninvestigated as a nootropic agent. This study sought to identify secondary metabolites in white cabbage extract (WCE) and to predict the molecular interaction between the phytochemical constituents of cabbage and phosphodiesterase-1B (PDE1B) using in silico studies. Methods: The WCE was prepared by macerating crushed fresh white cabbage with ethanol for 24 h with continuous stirring. The phytochemical profile of WCE was analyzed using thin layer chromatography (TLC)-densitometry, and molecular docking studies were performed to predict the underlying mechanism action of the phytochemicals with PDE1B. Results: The TLC-densitometry analysis showed that WCE was a rich source of sinigrin, whereas quercetin, chlorogenic acid, and rutin were not detected. In silico studies identified neobrassicin as having the highest affinity (∆Gbind: −19.3358 kcal/mol) for PDE1B. However, quercetin (∆Gbind: −13.1813 kcal/mol) and chlorogenic acid (∆Gbind: −14.8706 kcal/mol) exhibited moderate interaction with PDE1B. Conclusion: These results suggest that WCE has the potency to improve memory function by blocking PDE1B, and this preliminary study implies upcoming in vitro and in vivo research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of HerbMed Pharmacology
Journal of HerbMed Pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
2.50
自引率
0.00%
发文量
49
审稿时长
12 weeks
期刊介绍: Journal of Herbmed Pharmacology (J Herbmed Pharmacol) is the intersection between medicinal plants and pharmacology. This international journal publishes manuscripts in the fields of medicinal plants, pharmacology and therapeutic. This journal aims to reach all relevant national and international medical institutions and persons in electronic version free of charge. J Herbmed Pharmacol has pursued this aim through publishing editorials, original research articles, reviews, mini-reviews, commentaries, letters to the editor, hypothesis, case reports, epidemiology and prevention, news and views. In this journal, particular emphasis is given to research, both experimental and clinical, aimed at protection/prevention of diseases. A further aim of this journal is to emphasize and strengthen the link between herbalists and pharmacologists. In addition, J Herbmed Pharmacol welcomes basic biomedical as well as pharmaceutical scientific research applied to clinical pharmacology. Contributions in any of these formats are invited for editorial consideration following peer review by at least two experts in the field.
期刊最新文献
Epigallocatechin gallate, the primary bioactive component from Camellia sinensis: A review on immunomodulatory effects in autoimmune diseases by balancing the differentiation of Th and Treg cells Rethinking the basic action modes of herbal medicine and pondering classical standardization Exploring the anti-acne potential of Muntingia calabura L leaves against Staphylococcus epidermidis: In vitro and in silico perspective Solanum trilobatum leaf extract-derived silver nanoparticles downregulate the PI3K/AKT/mTOR signaling pathway and attenuate oral squamous cell carcinoma cell proliferation Integrative computational approaches for designing novel alpha-glucosidase inhibitors based on curculigoside A derivatives: Virtual screening, molecular docking, and molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1