利用哨兵 1 号图像数据进行水稻生长期建模的支持向量回归(SVR)方法

Hengki Muradi, A. Saefuddin, I. Sumertajaya, A. Soleh, Dede Dirgahayu Domiri
{"title":"利用哨兵 1 号图像数据进行水稻生长期建模的支持向量回归(SVR)方法","authors":"Hengki Muradi, A. Saefuddin, I. Sumertajaya, A. Soleh, Dede Dirgahayu Domiri","doi":"10.14710/medstat.16.1.25-36","DOIUrl":null,"url":null,"abstract":"Support Vector Machines (SVMs) have received extensive attention over the last decade because it is claimed to be able to produce models that are accurate and have good predictions in various situations. This study aims to test the SVR (Support Vector Regression) method for modeling the growth phase of paddy using sentinel-1 image data. This method was compared for its accuracy with the LR (Linear Model) method using RMSE and R2 statistics and model stability using 10 repetitions. The accuracy of the model with the two best predictors is when the NDPI and API Polarization Index are the predictors. The paddy age model from the SVR method is better than the paddy age model from the LR method, where the SVR method produces a model with an average RMSE of 11.13 and an average coefficient of determination of 88.10%. The accuracy of the SVR model with NDPI and API predictors can be improved by adding VH polarization to the model, where the average RMSE statistic decreases to 11.0 and the average coefficient of determination becomes 88.42%. In this scenario, the best model gives a minimum RMSE value of 10.35 and a coefficient of determination of 90.05%.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPPORT VECTOR REGRESSION (SVR) METHOD FOR PADDY GROWTH PHASE MODELING USING SENTINEL-1 IMAGE DATA\",\"authors\":\"Hengki Muradi, A. Saefuddin, I. Sumertajaya, A. Soleh, Dede Dirgahayu Domiri\",\"doi\":\"10.14710/medstat.16.1.25-36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machines (SVMs) have received extensive attention over the last decade because it is claimed to be able to produce models that are accurate and have good predictions in various situations. This study aims to test the SVR (Support Vector Regression) method for modeling the growth phase of paddy using sentinel-1 image data. This method was compared for its accuracy with the LR (Linear Model) method using RMSE and R2 statistics and model stability using 10 repetitions. The accuracy of the model with the two best predictors is when the NDPI and API Polarization Index are the predictors. The paddy age model from the SVR method is better than the paddy age model from the LR method, where the SVR method produces a model with an average RMSE of 11.13 and an average coefficient of determination of 88.10%. The accuracy of the SVR model with NDPI and API predictors can be improved by adding VH polarization to the model, where the average RMSE statistic decreases to 11.0 and the average coefficient of determination becomes 88.42%. In this scenario, the best model gives a minimum RMSE value of 10.35 and a coefficient of determination of 90.05%.\",\"PeriodicalId\":34146,\"journal\":{\"name\":\"Media Statistika\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Media Statistika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/medstat.16.1.25-36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.16.1.25-36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

支持向量机(SVM)在过去十年中受到了广泛关注,因为它被认为能够在各种情况下生成准确且具有良好预测能力的模型。本研究旨在测试利用哨兵-1 图像数据建立水稻生长阶段模型的 SVR(支持向量回归)方法。使用 RMSE 和 R2 统计量比较了该方法与 LR(线性模型)方法的准确性,并使用 10 次重复对模型的稳定性进行了比较。当 NDPI 和 API 偏振指数作为预测因子时,两个最佳预测因子的模型准确性最高。SVR 方法得出的稻龄模型优于 LR 方法得出的稻龄模型,其中 SVR 方法得出的模型平均 RMSE 为 11.13,平均决定系数为 88.10%。通过在模型中加入 VH 极化,使用 NDPI 和 API 预测因子的 SVR 模型的准确性得到提高,平均 RMSE 统计量降至 11.0,平均判定系数变为 88.42%。在这种情况下,最佳模型的最小均方根误差值为 10.35,判定系数为 90.05%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SUPPORT VECTOR REGRESSION (SVR) METHOD FOR PADDY GROWTH PHASE MODELING USING SENTINEL-1 IMAGE DATA
Support Vector Machines (SVMs) have received extensive attention over the last decade because it is claimed to be able to produce models that are accurate and have good predictions in various situations. This study aims to test the SVR (Support Vector Regression) method for modeling the growth phase of paddy using sentinel-1 image data. This method was compared for its accuracy with the LR (Linear Model) method using RMSE and R2 statistics and model stability using 10 repetitions. The accuracy of the model with the two best predictors is when the NDPI and API Polarization Index are the predictors. The paddy age model from the SVR method is better than the paddy age model from the LR method, where the SVR method produces a model with an average RMSE of 11.13 and an average coefficient of determination of 88.10%. The accuracy of the SVR model with NDPI and API predictors can be improved by adding VH polarization to the model, where the average RMSE statistic decreases to 11.0 and the average coefficient of determination becomes 88.42%. In this scenario, the best model gives a minimum RMSE value of 10.35 and a coefficient of determination of 90.05%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊最新文献
SIMULATION STUDY FOR UNDERSTANDING THE PERFORMANCE OF PARTIAL LEAST SQUARES–MODIFIED FUZZY CLUSTERING (PLSMFC) IN FINDING GROUPS UNDER STRUCTURAL EQUATION MODEL BETA-BINOMIAL MODEL IN SMALL AREA ESTIMATION USING HIERARCHICAL LIKELIHOOD APPROACH SURVIVAL ANALYSIS FOR RECURRENT EVENT DATA USING COUNTING PROCESS APPROACH: APPLICATION TO DIABETICS COMPARISON OF SPATIAL WEIGHTED MATRIX BETWEEN POWER AND QUEEN ON THE SPATIAL EMPIRICAL BEST LINEAR UNBIASED PREDICTION MODEL (Study on Per Capita Expenditure in East Java Province in 2019) MAX-STABLE PROCESS WITH GEOMETRIC GAUSSIAN MODEL ON RAINFALL DATA IN SEMARANG CITY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1