磁场和电喷雾组合对藻酸盐核壳复合吸附剂中碳纳米管取向及亚甲蓝吸附的影响

Y. Moayedfard, A. Samimi, H. Khosravi, R. Beigmoradi
{"title":"磁场和电喷雾组合对藻酸盐核壳复合吸附剂中碳纳米管取向及亚甲蓝吸附的影响","authors":"Y. Moayedfard, A. Samimi, H. Khosravi, R. Beigmoradi","doi":"10.47176/jame.42.1.1019","DOIUrl":null,"url":null,"abstract":"In the present study, the effect of magnetic field and electrospray on the orientation of carbon nanotubes (CNT), stabilized with COOH, in the obtained alginate/CNT adsorbent’s matrix, as well as the adsorption of methylene blue, were investigated. FE-SEM and UV-visible spectroscopy were used to determine the characteristics and performance of absorbents. The images showed that the CNTs were significantly oriented in the polymer matrix by placing alginate-CNTs colloid in a magnetic field with an average strength of 318 mT for 2 h. While the spraying of colloidal droplets under the electric field had a negligible effect on the alignment of CNTs, it led to the size reduction of the droplets and an increase in the specific surface area of particles. By combining magnetic and electric fields in the presence of CNT, 92.2% of the methylene blue adsorption was obtained, which was higher than electrospray only (71%), and electrospray only without CNTs (59%). This research revealed that the orientation of carbon nanotubes under magnetic and electric fields was effective in increasing the adsorption efficiency of environmental pollutants and can lead to the production of more economical adsorbents.","PeriodicalId":30992,"journal":{"name":"Journal of Advanced Materials in Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Magnetic Field and Electrospray Combination on the Orientation of Carbon Nanotubes in Alginate Core-Shell Composite Adsorbent and Methylene Blue Adsorption\",\"authors\":\"Y. Moayedfard, A. Samimi, H. Khosravi, R. Beigmoradi\",\"doi\":\"10.47176/jame.42.1.1019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, the effect of magnetic field and electrospray on the orientation of carbon nanotubes (CNT), stabilized with COOH, in the obtained alginate/CNT adsorbent’s matrix, as well as the adsorption of methylene blue, were investigated. FE-SEM and UV-visible spectroscopy were used to determine the characteristics and performance of absorbents. The images showed that the CNTs were significantly oriented in the polymer matrix by placing alginate-CNTs colloid in a magnetic field with an average strength of 318 mT for 2 h. While the spraying of colloidal droplets under the electric field had a negligible effect on the alignment of CNTs, it led to the size reduction of the droplets and an increase in the specific surface area of particles. By combining magnetic and electric fields in the presence of CNT, 92.2% of the methylene blue adsorption was obtained, which was higher than electrospray only (71%), and electrospray only without CNTs (59%). This research revealed that the orientation of carbon nanotubes under magnetic and electric fields was effective in increasing the adsorption efficiency of environmental pollutants and can lead to the production of more economical adsorbents.\",\"PeriodicalId\":30992,\"journal\":{\"name\":\"Journal of Advanced Materials in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Materials in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47176/jame.42.1.1019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Materials in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/jame.42.1.1019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了磁场和电喷雾对海藻酸盐/碳纳米管吸附剂基质中用 COOH 稳定的碳纳米管(CNT)取向的影响,以及对亚甲蓝的吸附。利用 FE-SEM 和紫外可见光谱测定了吸附剂的特性和性能。图像显示,将海藻酸盐-CNTs 胶体置于平均强度为 318 mT 的磁场中 2 小时后,CNTs 在聚合物基质中明显定向。在有碳纳米管存在的情况下,通过磁场和电场的结合,亚甲基蓝的吸附率达到了 92.2%,高于仅有电喷雾的吸附率(71%)和仅有电喷雾而无碳纳米管的吸附率(59%)。这项研究表明,碳纳米管在磁场和电场下的取向能有效提高对环境污染物的吸附效率,并能生产出更经济的吸附剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Magnetic Field and Electrospray Combination on the Orientation of Carbon Nanotubes in Alginate Core-Shell Composite Adsorbent and Methylene Blue Adsorption
In the present study, the effect of magnetic field and electrospray on the orientation of carbon nanotubes (CNT), stabilized with COOH, in the obtained alginate/CNT adsorbent’s matrix, as well as the adsorption of methylene blue, were investigated. FE-SEM and UV-visible spectroscopy were used to determine the characteristics and performance of absorbents. The images showed that the CNTs were significantly oriented in the polymer matrix by placing alginate-CNTs colloid in a magnetic field with an average strength of 318 mT for 2 h. While the spraying of colloidal droplets under the electric field had a negligible effect on the alignment of CNTs, it led to the size reduction of the droplets and an increase in the specific surface area of particles. By combining magnetic and electric fields in the presence of CNT, 92.2% of the methylene blue adsorption was obtained, which was higher than electrospray only (71%), and electrospray only without CNTs (59%). This research revealed that the orientation of carbon nanotubes under magnetic and electric fields was effective in increasing the adsorption efficiency of environmental pollutants and can lead to the production of more economical adsorbents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
50 weeks
期刊最新文献
Investigating the Effect of Chemical Composition and Sintering Temperature on Mechanical Properties of SiC-5TiB2 Nano Composite Reinforced by Graphene Quantum dot using Taguchi Test Design Method Synthesis and Characterization of Composite Coating of Iron Oxide and Bioactive Glass, Coated by Electrophoretic co-Deposition Method for Biomedical Applications The Effect of Carbon Nanotubes in Improving the Electromagnetic Behavior of W-type Hexaferrite Nanoparticles Doped With Mn and Ca Cations Investigating the Microstructure and Biological Properties of Baghdadite Bioceramic Nanoparticles Synthesized by Sol-Gel Process The Effect of Pigment Material on the Optical Absorbance, Emittance, and Wear Resistance of Black Anodized Coatings: A Case Study on 7075 Aluminum Alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1