Jinpeng Li, Hang Yu, zhenyuzhang, Xiangfeng Luo, Shaorong Xie
{"title":"利用漂移类型适应概念漂移","authors":"Jinpeng Li, Hang Yu, zhenyuzhang, Xiangfeng Luo, Shaorong Xie","doi":"10.1145/3638777","DOIUrl":null,"url":null,"abstract":"<p>Concept drift is a phenomenon where the distribution of data streams changes over time. When this happens, model predictions become less accurate. Hence, models built in the past need to be re-learned for the current data. Two design questions need to be addressed in designing a strategy to re-learn models: which type of concept drift has occurred, and how to utilize the drift type to improve re-learning performance. Existing drift detection methods are often good at determining when drift has occurred. However, few retrieve information about how the drift came to be present in the stream. Hence, determining the impact of the type of drift on adaptation is difficult. Filling this gap, we designed a framework based on a lazy strategy called Type-Driven Lazy Drift Adaptor (Type-LDA). Type-LDA first retrieves information about both how and when a drift has occurred, then it uses this information to re-learn the new model. To identify the type of drift, a drift type identifier is pre-trained on synthetic data of known drift types. Further, a drift point locator locates the optimal point of drift via a sharing loss. Hence, Type-LDA can select the optimal point, according to the drift type, to re-learn the new model. Experiments validate Type-LDA on both synthetic data and real-world data, and the results show that accurately identifying drift type can improve adaptation accuracy.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"23 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Concept Drift Adaptation by Exploiting Drift Type\",\"authors\":\"Jinpeng Li, Hang Yu, zhenyuzhang, Xiangfeng Luo, Shaorong Xie\",\"doi\":\"10.1145/3638777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Concept drift is a phenomenon where the distribution of data streams changes over time. When this happens, model predictions become less accurate. Hence, models built in the past need to be re-learned for the current data. Two design questions need to be addressed in designing a strategy to re-learn models: which type of concept drift has occurred, and how to utilize the drift type to improve re-learning performance. Existing drift detection methods are often good at determining when drift has occurred. However, few retrieve information about how the drift came to be present in the stream. Hence, determining the impact of the type of drift on adaptation is difficult. Filling this gap, we designed a framework based on a lazy strategy called Type-Driven Lazy Drift Adaptor (Type-LDA). Type-LDA first retrieves information about both how and when a drift has occurred, then it uses this information to re-learn the new model. To identify the type of drift, a drift type identifier is pre-trained on synthetic data of known drift types. Further, a drift point locator locates the optimal point of drift via a sharing loss. Hence, Type-LDA can select the optimal point, according to the drift type, to re-learn the new model. Experiments validate Type-LDA on both synthetic data and real-world data, and the results show that accurately identifying drift type can improve adaptation accuracy.</p>\",\"PeriodicalId\":49249,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3638777\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3638777","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Concept drift is a phenomenon where the distribution of data streams changes over time. When this happens, model predictions become less accurate. Hence, models built in the past need to be re-learned for the current data. Two design questions need to be addressed in designing a strategy to re-learn models: which type of concept drift has occurred, and how to utilize the drift type to improve re-learning performance. Existing drift detection methods are often good at determining when drift has occurred. However, few retrieve information about how the drift came to be present in the stream. Hence, determining the impact of the type of drift on adaptation is difficult. Filling this gap, we designed a framework based on a lazy strategy called Type-Driven Lazy Drift Adaptor (Type-LDA). Type-LDA first retrieves information about both how and when a drift has occurred, then it uses this information to re-learn the new model. To identify the type of drift, a drift type identifier is pre-trained on synthetic data of known drift types. Further, a drift point locator locates the optimal point of drift via a sharing loss. Hence, Type-LDA can select the optimal point, according to the drift type, to re-learn the new model. Experiments validate Type-LDA on both synthetic data and real-world data, and the results show that accurately identifying drift type can improve adaptation accuracy.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.