使用准污染移位非对称拉普拉斯混合物族进行无监督分类

IF 1.8 4区 计算机科学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Journal of Classification Pub Date : 2024-01-06 DOI:10.1007/s00357-023-09460-0
{"title":"使用准污染移位非对称拉普拉斯混合物族进行无监督分类","authors":"","doi":"10.1007/s00357-023-09460-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A family of parsimonious contaminated shifted asymmetric Laplace mixtures is developed for unsupervised classification of asymmetric clusters in the presence of outliers and noise. A series of constraints are applied to a modified factor analyzer structure of the component scale matrices, yielding a family of twelve models. Application of the modified factor analyzer structure and these parsimonious constraints makes these models effective for the analysis of high-dimensional data by reducing the number of free parameters that need to be estimated. A variant of the expectation-maximization algorithm is developed for parameter estimation with convergence issues being discussed and addressed. Popular model selection criteria like the Bayesian information criterion and the integrated complete likelihood (ICL) are utilized, and a novel modification to the ICL is also considered. Through a series of simulation studies and real data analyses, that includes comparisons to well-established methods, we demonstrate the improvements in classification performance found using the proposed family of models.</p>","PeriodicalId":50241,"journal":{"name":"Journal of Classification","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures\",\"authors\":\"\",\"doi\":\"10.1007/s00357-023-09460-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A family of parsimonious contaminated shifted asymmetric Laplace mixtures is developed for unsupervised classification of asymmetric clusters in the presence of outliers and noise. A series of constraints are applied to a modified factor analyzer structure of the component scale matrices, yielding a family of twelve models. Application of the modified factor analyzer structure and these parsimonious constraints makes these models effective for the analysis of high-dimensional data by reducing the number of free parameters that need to be estimated. A variant of the expectation-maximization algorithm is developed for parameter estimation with convergence issues being discussed and addressed. Popular model selection criteria like the Bayesian information criterion and the integrated complete likelihood (ICL) are utilized, and a novel modification to the ICL is also considered. Through a series of simulation studies and real data analyses, that includes comparisons to well-established methods, we demonstrate the improvements in classification performance found using the proposed family of models.</p>\",\"PeriodicalId\":50241,\"journal\":{\"name\":\"Journal of Classification\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00357-023-09460-0\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00357-023-09460-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 针对存在离群值和噪声的非对称聚类的无监督分类,开发了一系列简明的污染偏移非对称拉普拉斯混合物。对分量尺度矩阵的修正因子分析器结构应用了一系列约束条件,产生了一个由十二个模型组成的模型族。应用改进的因子分析器结构和这些简洁的约束条件,可以减少需要估计的自由参数数量,从而使这些模型在分析高维数据时非常有效。为参数估计开发了一种期望最大化算法的变体,并讨论和解决了收敛问题。利用了贝叶斯信息准则和综合完全似然(ICL)等流行的模型选择标准,还考虑了对 ICL 的新修改。通过一系列模拟研究和真实数据分析(包括与成熟方法的比较),我们证明了所提出的模型系列在分类性能方面的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Classification with a Family of Parsimonious Contaminated Shifted Asymmetric Laplace Mixtures

Abstract

A family of parsimonious contaminated shifted asymmetric Laplace mixtures is developed for unsupervised classification of asymmetric clusters in the presence of outliers and noise. A series of constraints are applied to a modified factor analyzer structure of the component scale matrices, yielding a family of twelve models. Application of the modified factor analyzer structure and these parsimonious constraints makes these models effective for the analysis of high-dimensional data by reducing the number of free parameters that need to be estimated. A variant of the expectation-maximization algorithm is developed for parameter estimation with convergence issues being discussed and addressed. Popular model selection criteria like the Bayesian information criterion and the integrated complete likelihood (ICL) are utilized, and a novel modification to the ICL is also considered. Through a series of simulation studies and real data analyses, that includes comparisons to well-established methods, we demonstrate the improvements in classification performance found using the proposed family of models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Classification
Journal of Classification 数学-数学跨学科应用
CiteScore
3.60
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: To publish original and valuable papers in the field of classification, numerical taxonomy, multidimensional scaling and other ordination techniques, clustering, tree structures and other network models (with somewhat less emphasis on principal components analysis, factor analysis, and discriminant analysis), as well as associated models and algorithms for fitting them. Articles will support advances in methodology while demonstrating compelling substantive applications. Comprehensive review articles are also acceptable. Contributions will represent disciplines such as statistics, psychology, biology, information retrieval, anthropology, archeology, astronomy, business, chemistry, computer science, economics, engineering, geography, geology, linguistics, marketing, mathematics, medicine, political science, psychiatry, sociology, and soil science.
期刊最新文献
How to Measure the Researcher Impact with the Aid of its Impactable Area: A Concrete Approach Using Distance Geometry Multi-task Support Vector Machine Classifier with Generalized Huber Loss Clustering-Based Oversampling Algorithm for Multi-class Imbalance Learning Combining Semi-supervised Clustering and Classification Under a Generalized Framework Slope Stability Classification Model Based on Single-Valued Neutrosophic Matrix Energy and Its Application Under a Single-Valued Neutrosophic Matrix Scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1