{"title":"互补复合最小化、一般规范中的小梯度及其应用","authors":"Jelena Diakonikolas, Cristóbal Guzmán","doi":"10.1007/s10107-023-02040-5","DOIUrl":null,"url":null,"abstract":"<p>Composite minimization is a powerful framework in large-scale convex optimization, based on decoupling of the objective function into terms with structurally different properties and allowing for more flexible algorithmic design. We introduce a new algorithmic framework for <i>complementary composite minimization</i>, where the objective function decouples into a (weakly) smooth and a uniformly convex term. This particular form of decoupling is pervasive in statistics and machine learning, due to its link to regularization. The main contributions of our work are summarized as follows. First, we introduce the problem of complementary composite minimization in general normed spaces; second, we provide a unified accelerated algorithmic framework to address broad classes of complementary composite minimization problems; and third, we prove that the algorithms resulting from our framework are near-optimal in most of the standard optimization settings. Additionally, we show that our algorithmic framework can be used to address the problem of making the gradients small in general normed spaces. As a concrete example, we obtain a nearly-optimal method for the standard <span>\\(\\ell _1\\)</span> setup (small gradients in the <span>\\(\\ell _\\infty \\)</span> norm), essentially matching the bound of Nesterov (Optima Math Optim Soc Newsl 88:10–11, 2012) that was previously known only for the Euclidean setup. Finally, we show that our composite methods are broadly applicable to a number of regression and other classes of optimization problems, where regularization plays a key role. Our methods lead to complexity bounds that are either new or match the best existing ones.</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"20 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementary composite minimization, small gradients in general norms, and applications\",\"authors\":\"Jelena Diakonikolas, Cristóbal Guzmán\",\"doi\":\"10.1007/s10107-023-02040-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Composite minimization is a powerful framework in large-scale convex optimization, based on decoupling of the objective function into terms with structurally different properties and allowing for more flexible algorithmic design. We introduce a new algorithmic framework for <i>complementary composite minimization</i>, where the objective function decouples into a (weakly) smooth and a uniformly convex term. This particular form of decoupling is pervasive in statistics and machine learning, due to its link to regularization. The main contributions of our work are summarized as follows. First, we introduce the problem of complementary composite minimization in general normed spaces; second, we provide a unified accelerated algorithmic framework to address broad classes of complementary composite minimization problems; and third, we prove that the algorithms resulting from our framework are near-optimal in most of the standard optimization settings. Additionally, we show that our algorithmic framework can be used to address the problem of making the gradients small in general normed spaces. As a concrete example, we obtain a nearly-optimal method for the standard <span>\\\\(\\\\ell _1\\\\)</span> setup (small gradients in the <span>\\\\(\\\\ell _\\\\infty \\\\)</span> norm), essentially matching the bound of Nesterov (Optima Math Optim Soc Newsl 88:10–11, 2012) that was previously known only for the Euclidean setup. Finally, we show that our composite methods are broadly applicable to a number of regression and other classes of optimization problems, where regularization plays a key role. Our methods lead to complexity bounds that are either new or match the best existing ones.</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-023-02040-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-023-02040-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Complementary composite minimization, small gradients in general norms, and applications
Composite minimization is a powerful framework in large-scale convex optimization, based on decoupling of the objective function into terms with structurally different properties and allowing for more flexible algorithmic design. We introduce a new algorithmic framework for complementary composite minimization, where the objective function decouples into a (weakly) smooth and a uniformly convex term. This particular form of decoupling is pervasive in statistics and machine learning, due to its link to regularization. The main contributions of our work are summarized as follows. First, we introduce the problem of complementary composite minimization in general normed spaces; second, we provide a unified accelerated algorithmic framework to address broad classes of complementary composite minimization problems; and third, we prove that the algorithms resulting from our framework are near-optimal in most of the standard optimization settings. Additionally, we show that our algorithmic framework can be used to address the problem of making the gradients small in general normed spaces. As a concrete example, we obtain a nearly-optimal method for the standard \(\ell _1\) setup (small gradients in the \(\ell _\infty \) norm), essentially matching the bound of Nesterov (Optima Math Optim Soc Newsl 88:10–11, 2012) that was previously known only for the Euclidean setup. Finally, we show that our composite methods are broadly applicable to a number of regression and other classes of optimization problems, where regularization plays a key role. Our methods lead to complexity bounds that are either new or match the best existing ones.
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.