Huajie Chen , Chi Liu , Tianqing Zhu , Wanlei Zhou
{"title":"当深度学习遇到水印:应用、攻击和防御调查","authors":"Huajie Chen , Chi Liu , Tianqing Zhu , Wanlei Zhou","doi":"10.1016/j.csi.2023.103830","DOIUrl":null,"url":null,"abstract":"<div><p><span>Deep learning has been used to address various problems in a range of domains within both academia and industry. However, the issue of intellectual property with </span>deep learning models<span> has aroused broad attention. Watermarking, a proactive defense approach widely adopted to safeguard the copyright of digital content, is now sparking novel mechanisms for protecting the intellectual property of deep learning models. Further, significantly improved digital watermarking techniques<span> have been developed to protect multimedia content, primarily images, with high efficiency and effectiveness. Yet, our current understandings of these two technical forefronts, i.e., deep learning model watermarking and image watermarking via deep learning, are unilaterally separated and application-oriented. To this end, we have undertaken a survey on emerging watermarking mechanisms in the two areas from a novel security perspective. That is, we have surveyed attacks and defenses in deep learning model watermarking and deep-learning-based image watermarking. Within the survey, we propose an objective taxonomy to unify the two domains, revealing their commonly shared properties with reference to design principles, functionalities, etc. Upon the taxonomy, a comprehensive analysis of attacks and defenses associated with the shared properties in both domains is presented. We have summarized the collected methods from a technical aspect and their advantages vs. disadvantages. A discussion of the joint characteristics and possible improvements of the methods are attached. Lastly, we have also proposed several potential research directions to inspire more ideas in these areas.</span></span></p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"89 ","pages":"Article 103830"},"PeriodicalIF":4.1000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"When deep learning meets watermarking: A survey of application, attacks and defenses\",\"authors\":\"Huajie Chen , Chi Liu , Tianqing Zhu , Wanlei Zhou\",\"doi\":\"10.1016/j.csi.2023.103830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Deep learning has been used to address various problems in a range of domains within both academia and industry. However, the issue of intellectual property with </span>deep learning models<span> has aroused broad attention. Watermarking, a proactive defense approach widely adopted to safeguard the copyright of digital content, is now sparking novel mechanisms for protecting the intellectual property of deep learning models. Further, significantly improved digital watermarking techniques<span> have been developed to protect multimedia content, primarily images, with high efficiency and effectiveness. Yet, our current understandings of these two technical forefronts, i.e., deep learning model watermarking and image watermarking via deep learning, are unilaterally separated and application-oriented. To this end, we have undertaken a survey on emerging watermarking mechanisms in the two areas from a novel security perspective. That is, we have surveyed attacks and defenses in deep learning model watermarking and deep-learning-based image watermarking. Within the survey, we propose an objective taxonomy to unify the two domains, revealing their commonly shared properties with reference to design principles, functionalities, etc. Upon the taxonomy, a comprehensive analysis of attacks and defenses associated with the shared properties in both domains is presented. We have summarized the collected methods from a technical aspect and their advantages vs. disadvantages. A discussion of the joint characteristics and possible improvements of the methods are attached. Lastly, we have also proposed several potential research directions to inspire more ideas in these areas.</span></span></p></div>\",\"PeriodicalId\":50635,\"journal\":{\"name\":\"Computer Standards & Interfaces\",\"volume\":\"89 \",\"pages\":\"Article 103830\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Standards & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0920548923001113\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548923001113","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
When deep learning meets watermarking: A survey of application, attacks and defenses
Deep learning has been used to address various problems in a range of domains within both academia and industry. However, the issue of intellectual property with deep learning models has aroused broad attention. Watermarking, a proactive defense approach widely adopted to safeguard the copyright of digital content, is now sparking novel mechanisms for protecting the intellectual property of deep learning models. Further, significantly improved digital watermarking techniques have been developed to protect multimedia content, primarily images, with high efficiency and effectiveness. Yet, our current understandings of these two technical forefronts, i.e., deep learning model watermarking and image watermarking via deep learning, are unilaterally separated and application-oriented. To this end, we have undertaken a survey on emerging watermarking mechanisms in the two areas from a novel security perspective. That is, we have surveyed attacks and defenses in deep learning model watermarking and deep-learning-based image watermarking. Within the survey, we propose an objective taxonomy to unify the two domains, revealing their commonly shared properties with reference to design principles, functionalities, etc. Upon the taxonomy, a comprehensive analysis of attacks and defenses associated with the shared properties in both domains is presented. We have summarized the collected methods from a technical aspect and their advantages vs. disadvantages. A discussion of the joint characteristics and possible improvements of the methods are attached. Lastly, we have also proposed several potential research directions to inspire more ideas in these areas.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.