通过聚光照射生产太阳能燃料

IF 10.7 1区 工程技术 Q1 CHEMISTRY, PHYSICAL Green Energy & Environment Pub Date : 2024-01-03 DOI:10.1016/j.gee.2024.01.001
Yiwei Fu, Yi Wang, Jie Huang, Maochang Liu
{"title":"通过聚光照射生产太阳能燃料","authors":"Yiwei Fu, Yi Wang, Jie Huang, Maochang Liu","doi":"10.1016/j.gee.2024.01.001","DOIUrl":null,"url":null,"abstract":"<p>The climate crisis necessitates the development of non-fossil energy sources. Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure. However, solar fuel production is in its early stages of development, constrained by low conversion efficiency and challenges in scaling up production. Concentrated solar energy (CSE) technology has matured alongside the rapid growth of solar thermal power plants. This review provides an overview of current CSE methods and solar fuel production, analyzes their integration compatibility, and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry, thermochemistry, and photo-thermal co-catalysis for solar fuel production. The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE. Lastly, it explores emerging novel CSE technology methods in the field of solar fuel production.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"123 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar fuel production through concentrating light irradiation\",\"authors\":\"Yiwei Fu, Yi Wang, Jie Huang, Maochang Liu\",\"doi\":\"10.1016/j.gee.2024.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The climate crisis necessitates the development of non-fossil energy sources. Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure. However, solar fuel production is in its early stages of development, constrained by low conversion efficiency and challenges in scaling up production. Concentrated solar energy (CSE) technology has matured alongside the rapid growth of solar thermal power plants. This review provides an overview of current CSE methods and solar fuel production, analyzes their integration compatibility, and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry, thermochemistry, and photo-thermal co-catalysis for solar fuel production. The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE. Lastly, it explores emerging novel CSE technology methods in the field of solar fuel production.</p>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.01.001\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.01.001","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

气候危机要求开发非化石能源。利用太阳能生产燃料前景广阔,并为利用现有能源基础设施提供了潜力。然而,太阳能燃料生产仍处于早期发展阶段,受制于低转换效率和扩大生产规模的挑战。随着太阳能热发电厂的快速发展,聚光太阳能(CSE)技术也日趋成熟。本综述概述了当前的聚光太阳能(CSE)方法和太阳能燃料生产,分析了它们的集成兼容性,并结合光电化学、热化学和太阳能燃料生产的光热共催化,深入探讨了聚光太阳能(CSE)影响太阳能转换效率和产品选择性的理论机制。综述还总结了研究 CSE 光电效应和光热效应的方法。最后,它还探讨了太阳能燃料生产领域新出现的新型 CSE 技术方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solar fuel production through concentrating light irradiation

The climate crisis necessitates the development of non-fossil energy sources. Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure. However, solar fuel production is in its early stages of development, constrained by low conversion efficiency and challenges in scaling up production. Concentrated solar energy (CSE) technology has matured alongside the rapid growth of solar thermal power plants. This review provides an overview of current CSE methods and solar fuel production, analyzes their integration compatibility, and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry, thermochemistry, and photo-thermal co-catalysis for solar fuel production. The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE. Lastly, it explores emerging novel CSE technology methods in the field of solar fuel production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Energy & Environment
Green Energy & Environment Energy-Renewable Energy, Sustainability and the Environment
CiteScore
16.80
自引率
3.80%
发文量
332
审稿时长
12 days
期刊介绍: Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.
期刊最新文献
Construction of two-dimensional heterojunctions based on metal-free semiconductor materials and Covalent Organic Frameworks for exceptional solar energy catalysis Recent advancements in two-dimensional transition metal dichalcogenide materials towards hydrogen-evolution electrocatalysis Research on the application of defect engineering in the field of environmental catalysis Recyclable bio-based epoxy resin thermoset polymer from wood for circular economy Ti3C2 MXene nanosheets integrated cobalt-doped nickel hydroxide heterostructured composite: An efficient electrocatalyst for overall water-splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1