基于书目记录的文献管理的人在环潜在空间学习

IF 1.6 Q2 INFORMATION SCIENCE & LIBRARY SCIENCE International Journal on Digital Libraries Pub Date : 2024-01-04 DOI:10.1007/s00799-023-00389-8
{"title":"基于书目记录的文献管理的人在环潜在空间学习","authors":"","doi":"10.1007/s00799-023-00389-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Every researcher must conduct a literature review, and the document management needs of researchers working on various research topics vary. However, there are two major challenges. First, traditional methods such as the tree hierarchy of document folders and tag-based management are no longer effective with the enormous volume of publications. Second, although their bibliographic information is available to everyone, many papers can only be accessed through paid services. This study attempts to develop an interactive tool for personal literature management based solely on their bibliographic records. To make such a tool possible, we developed a principled “human-in-the-loop latent space learning” method that estimates the management criteria of each researcher based on his or her feedback to calculate the positions of documents in a two-dimensional space on the screen. As a set of bibliographic records forms a graph, our model is naturally designed as a graph-based encoder–decoder model that connects the graph and the space. In addition, we also devised an active learning framework using uncertainty sampling for it. The challenge here is to define the uncertainty in a problem setting. Experiments with ten researchers from the humanities, science, and engineering domains show that the proposed framework provides superior results to a typical graph convolutional encoder–decoder model. In addition, we found that our active learning framework was effective in selecting good samples.</p>","PeriodicalId":44974,"journal":{"name":"International Journal on Digital Libraries","volume":"9 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human-in-the-loop latent space learning for biblio-record-based literature management\",\"authors\":\"\",\"doi\":\"10.1007/s00799-023-00389-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Every researcher must conduct a literature review, and the document management needs of researchers working on various research topics vary. However, there are two major challenges. First, traditional methods such as the tree hierarchy of document folders and tag-based management are no longer effective with the enormous volume of publications. Second, although their bibliographic information is available to everyone, many papers can only be accessed through paid services. This study attempts to develop an interactive tool for personal literature management based solely on their bibliographic records. To make such a tool possible, we developed a principled “human-in-the-loop latent space learning” method that estimates the management criteria of each researcher based on his or her feedback to calculate the positions of documents in a two-dimensional space on the screen. As a set of bibliographic records forms a graph, our model is naturally designed as a graph-based encoder–decoder model that connects the graph and the space. In addition, we also devised an active learning framework using uncertainty sampling for it. The challenge here is to define the uncertainty in a problem setting. Experiments with ten researchers from the humanities, science, and engineering domains show that the proposed framework provides superior results to a typical graph convolutional encoder–decoder model. In addition, we found that our active learning framework was effective in selecting good samples.</p>\",\"PeriodicalId\":44974,\"journal\":{\"name\":\"International Journal on Digital Libraries\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00799-023-00389-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00799-023-00389-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 每个研究人员都必须进行文献综述,而从事不同研究课题的研究人员对文献管理的需求也各不相同。然而,目前存在两大挑战。首先,传统的方法,如文件文件夹的树状层次结构和基于标签的管理,在出版物数量巨大的情况下已不再有效。其次,虽然每个人都能获得其书目信息,但许多论文只能通过付费服务才能访问。本研究试图开发一种完全基于书目记录的个人文献管理互动工具。为了使这种工具成为可能,我们开发了一种原则性的 "人在回路中的潜在空间学习 "方法,该方法可根据每位研究人员的反馈估算其管理标准,从而计算出文档在屏幕上二维空间中的位置。由于书目记录集合构成了一个图,我们的模型自然被设计成一个基于图的编码器-解码器模型,将图和空间连接起来。此外,我们还利用不确定性采样设计了一个主动学习框架。这里的挑战在于如何在问题设置中定义不确定性。与来自人文、科学和工程领域的十位研究人员进行的实验表明,与典型的图卷积编码器-解码器模型相比,所提出的框架能提供更优越的结果。此外,我们还发现,我们的主动学习框架在选择良好样本方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human-in-the-loop latent space learning for biblio-record-based literature management

Abstract

Every researcher must conduct a literature review, and the document management needs of researchers working on various research topics vary. However, there are two major challenges. First, traditional methods such as the tree hierarchy of document folders and tag-based management are no longer effective with the enormous volume of publications. Second, although their bibliographic information is available to everyone, many papers can only be accessed through paid services. This study attempts to develop an interactive tool for personal literature management based solely on their bibliographic records. To make such a tool possible, we developed a principled “human-in-the-loop latent space learning” method that estimates the management criteria of each researcher based on his or her feedback to calculate the positions of documents in a two-dimensional space on the screen. As a set of bibliographic records forms a graph, our model is naturally designed as a graph-based encoder–decoder model that connects the graph and the space. In addition, we also devised an active learning framework using uncertainty sampling for it. The challenge here is to define the uncertainty in a problem setting. Experiments with ten researchers from the humanities, science, and engineering domains show that the proposed framework provides superior results to a typical graph convolutional encoder–decoder model. In addition, we found that our active learning framework was effective in selecting good samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
6.70%
发文量
20
期刊介绍: The International Journal on Digital Libraries (IJDL) examines the theory and practice of acquisition definition organization management preservation and dissemination of digital information via global networking. It covers all aspects of digital libraries (DLs) from large-scale heterogeneous data and information management & access to linking and connectivity to security privacy and policies to its application use and evaluation.The scope of IJDL includes but is not limited to: The FAIR principle and the digital libraries infrastructure Findable: Information access and retrieval; semantic search; data and information exploration; information navigation; smart indexing and searching; resource discovery Accessible: visualization and digital collections; user interfaces; interfaces for handicapped users; HCI and UX in DLs; Security and privacy in DLs; multimodal access Interoperable: metadata (definition management curation integration); syntactic and semantic interoperability; linked data Reusable: reproducibility; Open Science; sustainability profitability repeatability of research results; confidentiality and privacy issues in DLs Digital Library Architectures including heterogeneous and dynamic data management; data and repositories Acquisition of digital information: authoring environments for digital objects; digitization of traditional content Digital Archiving and Preservation Digital Preservation and curation Digital archiving Web Archiving Archiving and preservation Strategies AI for Digital Libraries Machine Learning for DLs Data Mining in DLs NLP for DLs Applications of Digital Libraries Digital Humanities Open Data and their reuse Scholarly DLs (incl. bibliometrics altmetrics) Epigraphy and Paleography Digital Museums Future trends in Digital Libraries Definition of DLs in a ubiquitous digital library world Datafication of digital collections Interaction and user experience (UX) in DLs Information visualization Collection understanding Privacy and security Multimodal user interfaces Accessibility (or "Access for users with disabilities") UX studies
期刊最新文献
Methods for generation, recommendation, exploration and analysis of scholarly publications Comparing free reference extraction pipelines Digital detection of play characters’ relationships in Shakespeare’s plays: extended cross-correlation analysis of the character appearance frequencies Book recommendation system: reviewing different techniques and approaches Structured abstract generator (SAG) model: analysis of IMRAD structure of articles and its effect on extractive summarization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1