{"title":"\"他看起来非常真实基于媒体、知识和搜索的深度假货识别策略","authors":"Dion Hoe-Lian Goh","doi":"10.1002/asi.24867","DOIUrl":null,"url":null,"abstract":"<p>Deepfakes are a potential source of disinformation and the ability to detect them is imperative. While research focused on algorithmic detection methods, there is little work conducted on how people identify deepfakes. This research attempts to fill this gap. Using semi-structured interviews, participants were asked to identify real and deepfake videos and explain how their decisions were made. Three categories of deepfake identification strategies emerged: the use of surface video and audio cues, processing of the messages conveyed in the video, and the searching of external sources. Participants often used multiple strategies within each category. However, identification challenges occurred due to participants' preconceived notions of deepfake characteristics and the message embodied in the video. This work contributes to research by shifting the focus from the algorithmic detection of deepfakes to human-oriented strategies. Practically, the findings provide guidance on how people can identify deepfakes, which can also form the basis for the development of educational materials.</p>","PeriodicalId":48810,"journal":{"name":"Journal of the Association for Information Science and Technology","volume":"75 6","pages":"643-654"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"“He looks very real”: Media, knowledge, and search-based strategies for deepfake identification\",\"authors\":\"Dion Hoe-Lian Goh\",\"doi\":\"10.1002/asi.24867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deepfakes are a potential source of disinformation and the ability to detect them is imperative. While research focused on algorithmic detection methods, there is little work conducted on how people identify deepfakes. This research attempts to fill this gap. Using semi-structured interviews, participants were asked to identify real and deepfake videos and explain how their decisions were made. Three categories of deepfake identification strategies emerged: the use of surface video and audio cues, processing of the messages conveyed in the video, and the searching of external sources. Participants often used multiple strategies within each category. However, identification challenges occurred due to participants' preconceived notions of deepfake characteristics and the message embodied in the video. This work contributes to research by shifting the focus from the algorithmic detection of deepfakes to human-oriented strategies. Practically, the findings provide guidance on how people can identify deepfakes, which can also form the basis for the development of educational materials.</p>\",\"PeriodicalId\":48810,\"journal\":{\"name\":\"Journal of the Association for Information Science and Technology\",\"volume\":\"75 6\",\"pages\":\"643-654\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Association for Information Science and Technology\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asi.24867\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Association for Information Science and Technology","FirstCategoryId":"91","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asi.24867","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
“He looks very real”: Media, knowledge, and search-based strategies for deepfake identification
Deepfakes are a potential source of disinformation and the ability to detect them is imperative. While research focused on algorithmic detection methods, there is little work conducted on how people identify deepfakes. This research attempts to fill this gap. Using semi-structured interviews, participants were asked to identify real and deepfake videos and explain how their decisions were made. Three categories of deepfake identification strategies emerged: the use of surface video and audio cues, processing of the messages conveyed in the video, and the searching of external sources. Participants often used multiple strategies within each category. However, identification challenges occurred due to participants' preconceived notions of deepfake characteristics and the message embodied in the video. This work contributes to research by shifting the focus from the algorithmic detection of deepfakes to human-oriented strategies. Practically, the findings provide guidance on how people can identify deepfakes, which can also form the basis for the development of educational materials.
期刊介绍:
The Journal of the Association for Information Science and Technology (JASIST) is a leading international forum for peer-reviewed research in information science. For more than half a century, JASIST has provided intellectual leadership by publishing original research that focuses on the production, discovery, recording, storage, representation, retrieval, presentation, manipulation, dissemination, use, and evaluation of information and on the tools and techniques associated with these processes.
The Journal welcomes rigorous work of an empirical, experimental, ethnographic, conceptual, historical, socio-technical, policy-analytic, or critical-theoretical nature. JASIST also commissions in-depth review articles (“Advances in Information Science”) and reviews of print and other media.