偏置钽/铂/钴/铁锰/钽抗蚀剂中的磁滞研究:结构尺寸的影响

IF 2.7 3区 物理与天体物理 Q2 PHYSICS, APPLIED Journal of Applied Physics Pub Date : 2024-01-05 DOI:10.1063/5.0173469
F. Fettar, L. Cagnon, D. Barral, P. David, L. Naudin, F. Blondelle, F. Gay
{"title":"偏置钽/铂/钴/铁锰/钽抗蚀剂中的磁滞研究:结构尺寸的影响","authors":"F. Fettar, L. Cagnon, D. Barral, P. David, L. Naudin, F. Blondelle, F. Gay","doi":"10.1063/5.0173469","DOIUrl":null,"url":null,"abstract":"There exists a controversy in the literature concerning the values of coercive and bias fields in antidots magnetic structures formed by a hexagonal network of nanoholes. The coercive fields (HC) and the exchange bias fields (∣HEXC∣) for antidots (deposited on ultrathin anodic aluminum oxide, namely, AAO) are either increased or diminished by comparison with the same magnetic nanostructures grown on continuous substrates (namely, CML). We propose to elucidate these debates by showing the importance of the easy axis of the magnetization, the direction of the applied magnetic field, the thicknesses of the layers, and the 3D-topology of nanoholes, as well as the magnetic and thermal history of the magnetic measurements. Here, biased Ta(5 nm)/Pt(5 nm)/Co(0.6 nm)/Fe50Mn50(X)/Ta(5 nm) antidots are investigated by extraordinary Hall effect measurements at 5 K, where X varies in the (0–5.5) nm range. The substrate consists in a hexagonal array of holes, described by the pair of (p,d) values, respectively, the period as the distance from center to center of two consecutive holes and the hole diameter. The dimensions of antidots are (p≈100 and d≈40 nm) for X=(2–5.5) nm, (p≈150 and d≈60 nm) for X=3.5 nm, and (p≈100 and d≈60 nm) for X=0. A continuous stack using Si/SiO2(100 nm) is used for comparison. HC and ∣HEXC∣ gradually increase when X is enhanced for both substrates, with nevertheless a weak decrease at high X for the continuous system. Perpendicular magnetic anisotropy is only observed for both unbiased samples, the X=2 nm continuous sample, and both X=5 nm samples that have undergone field cooling treatment from 500 to 5 K under −2 T. Usually, HC(AAO)>HC(CML), ∣HEXC(AAO)∣>∣HEXC(CML)∣, and ∣HA(AAO)∣<∣HA(CML)∣ (HA designating the anisotropy field). However, for certain conditions, as, for instance, for FC-procedures starting from high temperatures and/or strong magnetic field, other situations might be observed. A discussion pertaining to the amplitudes of HC, ∣HEXC∣ and the anisotropy field (∣HA∣) of continuous and discontinuous samples is given for our experimental results as well as for published data in the literature, in the light of structural characteristics (wedge-to-wedge distance, porosity, or coverage ratio). Such biased perpendicular antidots might be particularly used in specific nanomaterials devoted to spintronics.","PeriodicalId":15088,"journal":{"name":"Journal of Applied Physics","volume":"7 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of magnetic hysteresis in biased Ta/Pt/Co/FeMn/Ta antidots: Influence of structural dimensions\",\"authors\":\"F. Fettar, L. Cagnon, D. Barral, P. David, L. Naudin, F. Blondelle, F. Gay\",\"doi\":\"10.1063/5.0173469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There exists a controversy in the literature concerning the values of coercive and bias fields in antidots magnetic structures formed by a hexagonal network of nanoholes. The coercive fields (HC) and the exchange bias fields (∣HEXC∣) for antidots (deposited on ultrathin anodic aluminum oxide, namely, AAO) are either increased or diminished by comparison with the same magnetic nanostructures grown on continuous substrates (namely, CML). We propose to elucidate these debates by showing the importance of the easy axis of the magnetization, the direction of the applied magnetic field, the thicknesses of the layers, and the 3D-topology of nanoholes, as well as the magnetic and thermal history of the magnetic measurements. Here, biased Ta(5 nm)/Pt(5 nm)/Co(0.6 nm)/Fe50Mn50(X)/Ta(5 nm) antidots are investigated by extraordinary Hall effect measurements at 5 K, where X varies in the (0–5.5) nm range. The substrate consists in a hexagonal array of holes, described by the pair of (p,d) values, respectively, the period as the distance from center to center of two consecutive holes and the hole diameter. The dimensions of antidots are (p≈100 and d≈40 nm) for X=(2–5.5) nm, (p≈150 and d≈60 nm) for X=3.5 nm, and (p≈100 and d≈60 nm) for X=0. A continuous stack using Si/SiO2(100 nm) is used for comparison. HC and ∣HEXC∣ gradually increase when X is enhanced for both substrates, with nevertheless a weak decrease at high X for the continuous system. Perpendicular magnetic anisotropy is only observed for both unbiased samples, the X=2 nm continuous sample, and both X=5 nm samples that have undergone field cooling treatment from 500 to 5 K under −2 T. Usually, HC(AAO)>HC(CML), ∣HEXC(AAO)∣>∣HEXC(CML)∣, and ∣HA(AAO)∣<∣HA(CML)∣ (HA designating the anisotropy field). However, for certain conditions, as, for instance, for FC-procedures starting from high temperatures and/or strong magnetic field, other situations might be observed. A discussion pertaining to the amplitudes of HC, ∣HEXC∣ and the anisotropy field (∣HA∣) of continuous and discontinuous samples is given for our experimental results as well as for published data in the literature, in the light of structural characteristics (wedge-to-wedge distance, porosity, or coverage ratio). Such biased perpendicular antidots might be particularly used in specific nanomaterials devoted to spintronics.\",\"PeriodicalId\":15088,\"journal\":{\"name\":\"Journal of Applied Physics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0173469\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0173469","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

关于由纳米孔六边形网络形成的反点阵磁结构中的矫顽力场和偏置场的值,文献中存在争议。与生长在连续基底(即 CML)上的相同磁性纳米结构相比,沉积在超薄阳极氧化铝(即 AAO)上的 antidots 的矫顽力场 (HC) 和交换偏置场 (∣HEXC∣) 要么增大,要么减小。我们建议通过说明磁化易轴、外加磁场方向、层厚度和纳米孔三维拓扑结构以及磁性测量的磁性和热历史的重要性来阐明这些争论。在此,通过在 5 K 条件下进行非凡霍尔效应测量,研究了偏置的 Ta(5 nm)/Pt(5 nm)/Co(0.6 nm)/Fe50Mn50(X)/Ta(5 nm) antidots,其中 X 在 (0-5.5) nm 范围内变化。衬底由六边形孔阵列组成,分别用一对(p,d)值来描述,周期为两个连续孔中心到中心的距离和孔直径。当 X=(2-5.5) nm 时,锑点的尺寸为(p≈100 和 d≈40 nm);当 X=3.5 nm 时,锑点的尺寸为(p≈150 和 d≈60 nm);当 X=0 时,锑点的尺寸为(p≈100 和 d≈60 nm)。当 X 增强时,两种基底的 HC 和 ∣HEXC∣ 都会逐渐增加,然而在连续系统中,当 X 高时,HC 和 ∣HEXC∣ 会有微弱的下降。只有在两个无偏样品、X=2 nm 的连续样品以及在 -2 T 条件下经过从 500 K 到 5 K 的场冷却处理的两个 X=5 nm 样品中才能观察到垂直磁各向异性。通常,HC(AAO)>HC(CML)、∣HEXC(AAO)∣>∣HEXC(CML)∣和∣HA(AAO)∣<∣HA(CML)∣(HA 表示各向异性场)。然而,在某些条件下,例如从高温和/或强磁场开始的 FC 过程,可能会出现其他情况。根据结构特征(楔刃间距、孔隙率或覆盖率),对连续和不连续样品的 HC、∣HEXC∣ 和各向异性场 (∣HA∣) 的振幅进行了讨论。这种偏压垂直反向点可能特别适用于自旋电子学的特定纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of magnetic hysteresis in biased Ta/Pt/Co/FeMn/Ta antidots: Influence of structural dimensions
There exists a controversy in the literature concerning the values of coercive and bias fields in antidots magnetic structures formed by a hexagonal network of nanoholes. The coercive fields (HC) and the exchange bias fields (∣HEXC∣) for antidots (deposited on ultrathin anodic aluminum oxide, namely, AAO) are either increased or diminished by comparison with the same magnetic nanostructures grown on continuous substrates (namely, CML). We propose to elucidate these debates by showing the importance of the easy axis of the magnetization, the direction of the applied magnetic field, the thicknesses of the layers, and the 3D-topology of nanoholes, as well as the magnetic and thermal history of the magnetic measurements. Here, biased Ta(5 nm)/Pt(5 nm)/Co(0.6 nm)/Fe50Mn50(X)/Ta(5 nm) antidots are investigated by extraordinary Hall effect measurements at 5 K, where X varies in the (0–5.5) nm range. The substrate consists in a hexagonal array of holes, described by the pair of (p,d) values, respectively, the period as the distance from center to center of two consecutive holes and the hole diameter. The dimensions of antidots are (p≈100 and d≈40 nm) for X=(2–5.5) nm, (p≈150 and d≈60 nm) for X=3.5 nm, and (p≈100 and d≈60 nm) for X=0. A continuous stack using Si/SiO2(100 nm) is used for comparison. HC and ∣HEXC∣ gradually increase when X is enhanced for both substrates, with nevertheless a weak decrease at high X for the continuous system. Perpendicular magnetic anisotropy is only observed for both unbiased samples, the X=2 nm continuous sample, and both X=5 nm samples that have undergone field cooling treatment from 500 to 5 K under −2 T. Usually, HC(AAO)>HC(CML), ∣HEXC(AAO)∣>∣HEXC(CML)∣, and ∣HA(AAO)∣<∣HA(CML)∣ (HA designating the anisotropy field). However, for certain conditions, as, for instance, for FC-procedures starting from high temperatures and/or strong magnetic field, other situations might be observed. A discussion pertaining to the amplitudes of HC, ∣HEXC∣ and the anisotropy field (∣HA∣) of continuous and discontinuous samples is given for our experimental results as well as for published data in the literature, in the light of structural characteristics (wedge-to-wedge distance, porosity, or coverage ratio). Such biased perpendicular antidots might be particularly used in specific nanomaterials devoted to spintronics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Physics
Journal of Applied Physics 物理-物理:应用
CiteScore
5.40
自引率
9.40%
发文量
1534
审稿时长
2.3 months
期刊介绍: The Journal of Applied Physics (JAP) is an influential international journal publishing significant new experimental and theoretical results of applied physics research. Topics covered in JAP are diverse and reflect the most current applied physics research, including: Dielectrics, ferroelectrics, and multiferroics- Electrical discharges, plasmas, and plasma-surface interactions- Emerging, interdisciplinary, and other fields of applied physics- Magnetism, spintronics, and superconductivity- Organic-Inorganic systems, including organic electronics- Photonics, plasmonics, photovoltaics, lasers, optical materials, and phenomena- Physics of devices and sensors- Physics of materials, including electrical, thermal, mechanical and other properties- Physics of matter under extreme conditions- Physics of nanoscale and low-dimensional systems, including atomic and quantum phenomena- Physics of semiconductors- Soft matter, fluids, and biophysics- Thin films, interfaces, and surfaces
期刊最新文献
Dry needling and upper cervical spinal manipulation in patients with temporomandibular disorder: A multi-center randomized clinical trial. Fast inverse design of microwave and infrared Bi-stealth metamaterials based on equivalent circuit model Calibration of Jones–Wilkins–Lee equation of state for unreacted explosives with shock Hugoniot relationship and optimization algorithm Impulse coupling enhancement of aluminum targets under laser irradiation in a soft polymer confined geometry Optimal demodulation domain for microwave SQUID multiplexers in presence of readout system noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1