B 和 Event-B 精炼中的微量保留

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS Journal of Logical and Algebraic Methods in Programming Pub Date : 2024-01-05 DOI:10.1016/j.jlamp.2024.100943
Sebastian Stock , Atif Mashkoor , Michael Leuschel , Alexander Egyed
{"title":"B 和 Event-B 精炼中的微量保留","authors":"Sebastian Stock ,&nbsp;Atif Mashkoor ,&nbsp;Michael Leuschel ,&nbsp;Alexander Egyed","doi":"10.1016/j.jlamp.2024.100943","DOIUrl":null,"url":null,"abstract":"<div><p>Refinement guarantees that the concrete version of a model does not violate the constraints introduced at the abstract level. The peculiarity of refinement, however, is that we have no guarantee about the preservation of the behavior of the model. For example, a trace (a set of desirable states and transitions) created on the abstract model may not replay on the concrete model. Its manual recreation, usually via animation, is necessary to run the trace, as the model may have changed significantly during refinement. However, this is a labor-intensive and error-prone task. To this end, this article presents an automatic trace refining technique and tool called <em>BERT</em> (<u>B</u> and <u>E</u>vent-B Trace <u>R</u>efinement <u>T</u>echnique) that allows modelers to ensure the behavioral integrity of high-level traces at the concrete level. The cost- and time-effectiveness of BERT are shown in industrial-strength case studies from the automotive and aviation domains.</p></div>","PeriodicalId":48797,"journal":{"name":"Journal of Logical and Algebraic Methods in Programming","volume":"137 ","pages":"Article 100943"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352220824000014/pdfft?md5=014ec80e27c6d35f0f8d4a7e25c9564e&pid=1-s2.0-S2352220824000014-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Trace preservation in B and Event-B refinements\",\"authors\":\"Sebastian Stock ,&nbsp;Atif Mashkoor ,&nbsp;Michael Leuschel ,&nbsp;Alexander Egyed\",\"doi\":\"10.1016/j.jlamp.2024.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Refinement guarantees that the concrete version of a model does not violate the constraints introduced at the abstract level. The peculiarity of refinement, however, is that we have no guarantee about the preservation of the behavior of the model. For example, a trace (a set of desirable states and transitions) created on the abstract model may not replay on the concrete model. Its manual recreation, usually via animation, is necessary to run the trace, as the model may have changed significantly during refinement. However, this is a labor-intensive and error-prone task. To this end, this article presents an automatic trace refining technique and tool called <em>BERT</em> (<u>B</u> and <u>E</u>vent-B Trace <u>R</u>efinement <u>T</u>echnique) that allows modelers to ensure the behavioral integrity of high-level traces at the concrete level. The cost- and time-effectiveness of BERT are shown in industrial-strength case studies from the automotive and aviation domains.</p></div>\",\"PeriodicalId\":48797,\"journal\":{\"name\":\"Journal of Logical and Algebraic Methods in Programming\",\"volume\":\"137 \",\"pages\":\"Article 100943\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352220824000014/pdfft?md5=014ec80e27c6d35f0f8d4a7e25c9564e&pid=1-s2.0-S2352220824000014-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Logical and Algebraic Methods in Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352220824000014\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Logical and Algebraic Methods in Programming","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352220824000014","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

细化保证了模型的具体版本不会违反在抽象层引入的约束条件。然而,细化的特殊性在于我们无法保证模型行为的完整性。例如,在抽象模型上创建的轨迹(一组理想的状态和转换)可能无法在具体模型上重放。由于模型在细化过程中可能会发生重大变化,因此需要手动(通常是通过动画)重现以运行跟踪。然而,这是一项劳动密集型且容易出错的任务。为此,本文介绍了一种名为 BERT(B and Event-B Trace Refinement Technique,B 和 Event-B 跟踪细化技术)的自动跟踪细化技术和工具,它允许建模人员在具体层面上确保高层跟踪的行为完整性。在汽车和航空领域的工业案例研究中,展示了 BERT 的成本和时间效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trace preservation in B and Event-B refinements

Refinement guarantees that the concrete version of a model does not violate the constraints introduced at the abstract level. The peculiarity of refinement, however, is that we have no guarantee about the preservation of the behavior of the model. For example, a trace (a set of desirable states and transitions) created on the abstract model may not replay on the concrete model. Its manual recreation, usually via animation, is necessary to run the trace, as the model may have changed significantly during refinement. However, this is a labor-intensive and error-prone task. To this end, this article presents an automatic trace refining technique and tool called BERT (B and Event-B Trace Refinement Technique) that allows modelers to ensure the behavioral integrity of high-level traces at the concrete level. The cost- and time-effectiveness of BERT are shown in industrial-strength case studies from the automotive and aviation domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Logical and Algebraic Methods in Programming
Journal of Logical and Algebraic Methods in Programming COMPUTER SCIENCE, THEORY & METHODS-LOGIC
CiteScore
2.60
自引率
22.20%
发文量
48
期刊介绍: The Journal of Logical and Algebraic Methods in Programming is an international journal whose aim is to publish high quality, original research papers, survey and review articles, tutorial expositions, and historical studies in the areas of logical and algebraic methods and techniques for guaranteeing correctness and performability of programs and in general of computing systems. All aspects will be covered, especially theory and foundations, implementation issues, and applications involving novel ideas.
期刊最新文献
Editorial Board Generation of algebraic data type values using evolutionary algorithms Logic and Calculi for All on the occasion of Luís Barbosa’s 60th birthday First order Büchi automata and their application to verification of LTL specifications Tuning similarity-based fuzzy logic programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1