极端随机森林

IF 3 1区 数学 Q1 STATISTICS & PROBABILITY Journal of the American Statistical Association Pub Date : 2024-01-08 DOI:10.1080/01621459.2023.2300522
Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke
{"title":"极端随机森林","authors":"Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke","doi":"10.1080/01621459.2023.2300522","DOIUrl":null,"url":null,"abstract":"Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...","PeriodicalId":17227,"journal":{"name":"Journal of the American Statistical Association","volume":"27 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Random Forests\",\"authors\":\"Nicola Gnecco, Edossa Merga Terefe, Sebastian Engelke\",\"doi\":\"10.1080/01621459.2023.2300522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...\",\"PeriodicalId\":17227,\"journal\":{\"name\":\"Journal of the American Statistical Association\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Statistical Association\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/01621459.2023.2300522\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Statistical Association","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/01621459.2023.2300522","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

当所关注的量值是极值,只有少数或没有训练数据点超过该量值时,量值回归的经典方法就会失效。极值理论的渐近结果可以...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extremal Random Forests
Classical methods for quantile regression fail in cases where the quantile of interest is extreme and only few or no training data points exceed it. Asymptotic results from extreme value theory can...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
8.10%
发文量
168
审稿时长
12 months
期刊介绍: Established in 1888 and published quarterly in March, June, September, and December, the Journal of the American Statistical Association ( JASA ) has long been considered the premier journal of statistical science. Articles focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences. Important books contributing to statistical advancement are reviewed in JASA . JASA is indexed in Current Index to Statistics and MathSci Online and reviewed in Mathematical Reviews. JASA is abstracted by Access Company and is indexed and abstracted in the SRM Database of Social Research Methodology.
期刊最新文献
ROC Analysis for Classification and Prediction in Practice ℓ1 -based Bayesian Ideal Point Model for Multidimensional Politics Local signal detection on irregular domains with generalized varying coefficient models Functional Data Analysis with R. Probability Modeling and Statistical Inference in Cancer Screening
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1