确定可持续发展的关键部门:在一般均衡中估算政策影响的贝叶斯框架

IF 2.1 3区 经济学 Q2 AGRICULTURAL ECONOMICS & POLICY Agribusiness Pub Date : 2024-01-06 DOI:10.1002/agr.21889
Johannes Ziesmer
{"title":"确定可持续发展的关键部门:在一般均衡中估算政策影响的贝叶斯框架","authors":"Johannes Ziesmer","doi":"10.1002/agr.21889","DOIUrl":null,"url":null,"abstract":"<p>Transformation of the previous centrally growth-oriented economic systems to a sustainable bio-economy is a global political trend, where public policy is a key factor in making this successful. Designing effective and efficient policies requires understanding the linkages between policy choices and outcomes. Most existing studies are missing a direct link to policy choices and ignore fundamental model uncertainty present in policy analysis. We empirically estimate a sector-specific, nested two-stage policy impact function to address these shortcomings. We apply a Bayesian estimation approach that combines existing statistical data with a priori information from political experts, thus reducing data and estimation problems. This is linked with a Computable General Equilibrium to model the entire link from policies to outcomes. We derive a theoretical framework that allows the definition of indicators for key sectors of an efficient Pro-Poor-Growth strategy. In our generalized framework, we show that indicators based only on growth-poverty linkages might be misleading. To deal with model uncertainty inherent in the application, we derive a set of metamodels via simulations conducted under different model parameter settings and apply Markov Chain Monte Carlo sampling. Applying Bayesian model selection allows drawing statistical inferences on competing models to generate relatively robust policy-relevant messages even under model uncertainty. The approach is empirically applied to Ghana, Senegal, and Uganda, analyzing the allocation of public spending on agriculture under the Comprehensive Africa Agriculture Development Programme. [EconLit Citations: C11—Bayesian Analysis: General; C63—Computational Techniques, Simulation Modeling; D58—Computable and Other Applied General Equilibrium Models; O55—Africa; Q01—Sustainable Development; Q18—Agricultural Policy].</p>","PeriodicalId":55544,"journal":{"name":"Agribusiness","volume":"40 2","pages":"458-483"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agr.21889","citationCount":"0","resultStr":"{\"title\":\"Identifying key sectors of sustainable development: A Bayesian framework estimating policy-impacts in a general equilibrium\",\"authors\":\"Johannes Ziesmer\",\"doi\":\"10.1002/agr.21889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transformation of the previous centrally growth-oriented economic systems to a sustainable bio-economy is a global political trend, where public policy is a key factor in making this successful. Designing effective and efficient policies requires understanding the linkages between policy choices and outcomes. Most existing studies are missing a direct link to policy choices and ignore fundamental model uncertainty present in policy analysis. We empirically estimate a sector-specific, nested two-stage policy impact function to address these shortcomings. We apply a Bayesian estimation approach that combines existing statistical data with a priori information from political experts, thus reducing data and estimation problems. This is linked with a Computable General Equilibrium to model the entire link from policies to outcomes. We derive a theoretical framework that allows the definition of indicators for key sectors of an efficient Pro-Poor-Growth strategy. In our generalized framework, we show that indicators based only on growth-poverty linkages might be misleading. To deal with model uncertainty inherent in the application, we derive a set of metamodels via simulations conducted under different model parameter settings and apply Markov Chain Monte Carlo sampling. Applying Bayesian model selection allows drawing statistical inferences on competing models to generate relatively robust policy-relevant messages even under model uncertainty. The approach is empirically applied to Ghana, Senegal, and Uganda, analyzing the allocation of public spending on agriculture under the Comprehensive Africa Agriculture Development Programme. [EconLit Citations: C11—Bayesian Analysis: General; C63—Computational Techniques, Simulation Modeling; D58—Computable and Other Applied General Equilibrium Models; O55—Africa; Q01—Sustainable Development; Q18—Agricultural Policy].</p>\",\"PeriodicalId\":55544,\"journal\":{\"name\":\"Agribusiness\",\"volume\":\"40 2\",\"pages\":\"458-483\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agr.21889\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agribusiness\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agr.21889\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ECONOMICS & POLICY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agribusiness","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agr.21889","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ECONOMICS & POLICY","Score":null,"Total":0}
引用次数: 0

摘要

将以往以中央增长为导向的经济体系转变为可持续的生物经济是全球政治趋势,而公共政策是使这一转变取得成功的关键因素。设计切实有效的政策需要了解政策选择与结果之间的联系。现有的大多数研究缺乏与政策选择的直接联系,并忽视了政策分析中存在的基本模型不确定性。针对这些不足,我们通过经验估算了一个针对具体部门的嵌套式两阶段政策影响函数。我们采用贝叶斯估算方法,将现有统计数据与政治专家提供的先验信息相结合,从而减少了数据和估算问题。这种方法与可计算一般均衡相结合,对从政策到结果的整个环节进行建模。我们推导出一个理论框架,该框架允许定义高效扶贫增长战略关键部门的指标。在我们的广义框架中,我们表明仅基于增长与贫困之间联系的指标可能会产生误导。为了应对应用中固有的模型不确定性,我们通过在不同模型参数设置下进行模拟,并应用马尔可夫链蒙特卡罗抽样,得出了一套元模型。通过贝叶斯模型选择,可以对相互竞争的模型进行统计推断,即使在模型不确定的情况下,也能生成相对可靠的政策相关信息。该方法在加纳、塞内加尔和乌干达进行了实证应用,分析了非洲农业发展综合计划中农业公共支出的分配情况。[经济学引文:C11-Bayesian Analysis:一般;C63-计算技术,模拟建模;D58-可计算及其他应用一般均衡模型;O55-非洲;Q01-可持续发展;Q18-农业政策]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying key sectors of sustainable development: A Bayesian framework estimating policy-impacts in a general equilibrium

Transformation of the previous centrally growth-oriented economic systems to a sustainable bio-economy is a global political trend, where public policy is a key factor in making this successful. Designing effective and efficient policies requires understanding the linkages between policy choices and outcomes. Most existing studies are missing a direct link to policy choices and ignore fundamental model uncertainty present in policy analysis. We empirically estimate a sector-specific, nested two-stage policy impact function to address these shortcomings. We apply a Bayesian estimation approach that combines existing statistical data with a priori information from political experts, thus reducing data and estimation problems. This is linked with a Computable General Equilibrium to model the entire link from policies to outcomes. We derive a theoretical framework that allows the definition of indicators for key sectors of an efficient Pro-Poor-Growth strategy. In our generalized framework, we show that indicators based only on growth-poverty linkages might be misleading. To deal with model uncertainty inherent in the application, we derive a set of metamodels via simulations conducted under different model parameter settings and apply Markov Chain Monte Carlo sampling. Applying Bayesian model selection allows drawing statistical inferences on competing models to generate relatively robust policy-relevant messages even under model uncertainty. The approach is empirically applied to Ghana, Senegal, and Uganda, analyzing the allocation of public spending on agriculture under the Comprehensive Africa Agriculture Development Programme. [EconLit Citations: C11—Bayesian Analysis: General; C63—Computational Techniques, Simulation Modeling; D58—Computable and Other Applied General Equilibrium Models; O55—Africa; Q01—Sustainable Development; Q18—Agricultural Policy].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agribusiness
Agribusiness 农林科学-食品科技
CiteScore
5.50
自引率
6.20%
发文量
58
审稿时长
6 months
期刊介绍: Agribusiness: An International Journal publishes research that improves our understanding of how food systems work, how they are evolving, and how public and/or private actions affect the performance of the global agro-industrial complex. The journal focuses on the application of economic analysis to the organization and performance of firms and markets in industrial food systems. Subject matter areas include supply and demand analysis, industrial organization analysis, price and trade analysis, marketing, finance, and public policy analysis. International, cross-country comparative, and within-country studies are welcome. To facilitate research the journal’s Forum section, on an intermittent basis, offers commentary and reports on business policy issues.
期刊最新文献
Issue Information An Empirical Examination of BuyBox Assignments in Online Grocery Retail Who Is a Better Bargainer? Assessing the Impacts of Compost‐Bedded Pack Barns on the Productive Efficiency of Brazilian Dairy Farms Analyzing individual rent price ratios in eastern German agricultural land markets: A GAMLSS approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1