{"title":"沿圆周路径拖动三点法测量自由曲面","authors":"Kento Tokuchi, Mikio Kurita, Keisuke Takahashi","doi":"10.20965/ijat.2024.p0066","DOIUrl":null,"url":null,"abstract":"Freeform surfaces can realize optical systems with a wide field of view, high throughput, and high contrast. For constructing optical systems with freeform surfaces, measuring technology is essential. However, it is difficult to measure freeform surfaces by existing measurement methods. We have developed a new measurement method of the dragging three-point method (DTPM). To realize further improvement in the accuracy of the DTPM, we propose the DTPM with a circular path. Since the circular path is closed, the measurement error can be reduced by the boundary condition that the height and slope agree with at the start and end points of the measurement. To evaluate this method, we conducted the circular path measurement of an off-axis asphere. The measurement repeatability was RMS = 1.5 nm, and the result agreed well with that of an interferometric test; the difference was RMS = 17.2 nm.","PeriodicalId":43716,"journal":{"name":"International Journal of Automation Technology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of a Freeform Surface by Dragging Three Point Method Along with a Circular Path\",\"authors\":\"Kento Tokuchi, Mikio Kurita, Keisuke Takahashi\",\"doi\":\"10.20965/ijat.2024.p0066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freeform surfaces can realize optical systems with a wide field of view, high throughput, and high contrast. For constructing optical systems with freeform surfaces, measuring technology is essential. However, it is difficult to measure freeform surfaces by existing measurement methods. We have developed a new measurement method of the dragging three-point method (DTPM). To realize further improvement in the accuracy of the DTPM, we propose the DTPM with a circular path. Since the circular path is closed, the measurement error can be reduced by the boundary condition that the height and slope agree with at the start and end points of the measurement. To evaluate this method, we conducted the circular path measurement of an off-axis asphere. The measurement repeatability was RMS = 1.5 nm, and the result agreed well with that of an interferometric test; the difference was RMS = 17.2 nm.\",\"PeriodicalId\":43716,\"journal\":{\"name\":\"International Journal of Automation Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/ijat.2024.p0066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/ijat.2024.p0066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Measurement of a Freeform Surface by Dragging Three Point Method Along with a Circular Path
Freeform surfaces can realize optical systems with a wide field of view, high throughput, and high contrast. For constructing optical systems with freeform surfaces, measuring technology is essential. However, it is difficult to measure freeform surfaces by existing measurement methods. We have developed a new measurement method of the dragging three-point method (DTPM). To realize further improvement in the accuracy of the DTPM, we propose the DTPM with a circular path. Since the circular path is closed, the measurement error can be reduced by the boundary condition that the height and slope agree with at the start and end points of the measurement. To evaluate this method, we conducted the circular path measurement of an off-axis asphere. The measurement repeatability was RMS = 1.5 nm, and the result agreed well with that of an interferometric test; the difference was RMS = 17.2 nm.