{"title":"通过控制氮化铝粉末的比表面积减少氧气含量,从而利用物理气相传输技术实现氮化铝单晶生长","authors":"ZeRen Wang, Xing-Yu Zhu, Qi-Yue Zhao, Jie-Jun Wu, Tongjun Yu","doi":"10.1088/1361-6641/ad1b13","DOIUrl":null,"url":null,"abstract":"\n In the physical vapor transport (PVT) growth of AlN, re-oxidation of aluminum nitride (AlN) source powder happening in the process of setting seed crystal into crucible seems to be unavoidable. This process introduces oxygen just before AlN growth and has a significant impact on the crystal quality. In this paper, a high and low-temperature alternative sintering method (HLAS) is proposed based on the idea of specific surface area control to reduce the re-oxidation of AlN source powder. This method introduces cyclic sintering between 1500°C and 1900°C to the conventional three-step treatment repeatedly, which utilizes possible phase-transition along with the processes of powder sintering back and forth to increase the particle size and decrease the specific surface area significantly. The SEM (Scanning electron microscope) and BET (Brunauer, Emmett, and Teller) results showed that the specific surface area of AlN powder treated with the HLAS method can be reduced to one-third of that with the conventional method. Thus, the SIMS (secondary ion mass spectrometry) confirmed the reduction of oxygen impurity in AlN single-crystals to a good level of 1.5×1017cm-3. It is clear that this HLAS process is an effective way of controlling the specific surface area of AlN source powder, which contributes to the suppression of oxygen influence on PVT-AlN growth.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen reduction through specific surface area control of AlN powder for AlN single-crystal growth by physical vapor transport\",\"authors\":\"ZeRen Wang, Xing-Yu Zhu, Qi-Yue Zhao, Jie-Jun Wu, Tongjun Yu\",\"doi\":\"10.1088/1361-6641/ad1b13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the physical vapor transport (PVT) growth of AlN, re-oxidation of aluminum nitride (AlN) source powder happening in the process of setting seed crystal into crucible seems to be unavoidable. This process introduces oxygen just before AlN growth and has a significant impact on the crystal quality. In this paper, a high and low-temperature alternative sintering method (HLAS) is proposed based on the idea of specific surface area control to reduce the re-oxidation of AlN source powder. This method introduces cyclic sintering between 1500°C and 1900°C to the conventional three-step treatment repeatedly, which utilizes possible phase-transition along with the processes of powder sintering back and forth to increase the particle size and decrease the specific surface area significantly. The SEM (Scanning electron microscope) and BET (Brunauer, Emmett, and Teller) results showed that the specific surface area of AlN powder treated with the HLAS method can be reduced to one-third of that with the conventional method. Thus, the SIMS (secondary ion mass spectrometry) confirmed the reduction of oxygen impurity in AlN single-crystals to a good level of 1.5×1017cm-3. It is clear that this HLAS process is an effective way of controlling the specific surface area of AlN source powder, which contributes to the suppression of oxygen influence on PVT-AlN growth.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad1b13\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad1b13","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Oxygen reduction through specific surface area control of AlN powder for AlN single-crystal growth by physical vapor transport
In the physical vapor transport (PVT) growth of AlN, re-oxidation of aluminum nitride (AlN) source powder happening in the process of setting seed crystal into crucible seems to be unavoidable. This process introduces oxygen just before AlN growth and has a significant impact on the crystal quality. In this paper, a high and low-temperature alternative sintering method (HLAS) is proposed based on the idea of specific surface area control to reduce the re-oxidation of AlN source powder. This method introduces cyclic sintering between 1500°C and 1900°C to the conventional three-step treatment repeatedly, which utilizes possible phase-transition along with the processes of powder sintering back and forth to increase the particle size and decrease the specific surface area significantly. The SEM (Scanning electron microscope) and BET (Brunauer, Emmett, and Teller) results showed that the specific surface area of AlN powder treated with the HLAS method can be reduced to one-third of that with the conventional method. Thus, the SIMS (secondary ion mass spectrometry) confirmed the reduction of oxygen impurity in AlN single-crystals to a good level of 1.5×1017cm-3. It is clear that this HLAS process is an effective way of controlling the specific surface area of AlN source powder, which contributes to the suppression of oxygen influence on PVT-AlN growth.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.